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Chapter 0.
Introduction

This thesis consists in several mathematical approaches to calculation and computation.
These concepts, central to mathematics and computer science, are often confounded.
However, there is a natural distinction to be made between the two. Indeed, calculation
is a constructive process which transforms one (or more) inputs into one (or more)
outputs, while computation is the act of calculating in some well-defined (formal) context.
In other words, computation is a concrete instantiation of the abstract principles of
calculation.

Computation is, and has long been, a central tool in most scientific endeavours. A
computation is a determination, a derivation, a formal method of transforming a fact
or observation into a concrete result. It encapsulates the scientific desire to establish
unique answers, thereby distinguishing or relating different phenomena. In this sense, it
is a constructive approach to some notion of equivalence; it provides a formal method by
which to cut things apart or group things together.

The mechanisms by which computations take place are governed by the maxims of
calculation. Indeed, determining whether computation in some context provides, for any
specified input, a unique answer, can be determined by studying the abstract system
of calculation underlying the computations. The study of calculation as an abstract
directed process therefore underlies computation, a fundamental tool of science. Due
to this wide range of application, calculation has been studied in various branches of
mathematics for centuries. Moreover, calculation has a wide range of interpretation: any
directed system could be interpreted as some form of calculatory process.

Alongside providing a means of distinguishing or rendering certain observations or
concepts equivalent, another boon of calculation is its constructive nature. We usually
think of calculation as an algorithmic process, a series of steps which lead from a
specification to an output. Approaching abstract calculation from a mathematical
point of view, using tools from higher category theory or algebraic topology, lies on
the exciting interface between computer science, constructive mathematics, and other
classical mathematical frameworks.

In general, there are many ways one can reduce an object to another in a system of
calculation. This ambiguity in calculation and thereby computation can be approached

5



6 CHAPTER 0. INTRODUCTION

in many ways. Here, we distinguish two: on the one hand, we can view these as choices
in the way we calculate, and on the other, we may choose to view them as simultaneous
calculations. This ideological distinction brings us to the domains of abstract rewriting,
string rewriting and normalisation theory in the first case, and concurrency theory,
interleaving systems and consensus problems in the second.

Rewriting theory approaches the ambiguity of multiple possible reductions as a problem of
choice. This is resolved first by considering what we will refer to as consistency properties.
These express that the choices made while calculating do not affect the outcome, i.e. that
the system of calculation is internally consistent, or that equivalent objects will produce
the same unique answer when calculations are performed. Shortly put, this means that
the system of calculation is consistent with an ambient notion of equivalence. These
consistency properties express directed connectedness and zero-dimensional contractibility
properties, as will be made explicit, and are expressed in the context of abstract rewriting
systems (ARS). Coherence properties push this study of choice to higher dimensions,
providing constructive methods for producing truly free systems of calculation.

In concurrency theory, calculation is considered in a different manner. Here, we consider
systems of calculation which represent the simultaneous execution of several independent
computations. Instead of a calculation being represented by a single path through a
space of possible choices, concurrency theory tackles the problem of coordinating several
distinct (deterministic) processes, each representing a concrete (linear) computation.
Synchronising these independent calculations and understanding the properties of a such
a concurrent system of calculation are central to this domain. These systems are thought
of as spaces in which paths represent, not a choice, but a possibility. In this sense, the
syntax of a concurrent system is captured spatially, and synchronisation problems can be
related to the study of these directed spaces. As in classical topology, algebraic invariants
are used to characterise, as well as understand properties of, such spaces.

Formalising coherence

Consistency is an important property for systems of calculation. It expresses determinacy
of calculation, and a compatibility between the free closures of the system and a notion
of equivalence. The study of coherence properties in the context of rewriting theory
pushes this analysis up in dimension, considering equivalences between paths and defining
(higher) systems of calculation underlying these equivalences.

Coherence is a notion from higher category theory describing algebraic axioms up to
some notion of homotopy, which is encoded by higher dimensional cells. It may also be
seen as a form of inductive definition: structure at a given level is encoded via structure
at the level above, allowing a free description of the entire structure. This notion is
widely used, both in abstract settings, but also in calculation.

The categorical notion of coherence was introduced independently by MacLane [88] and
by Epstein [39]. In the case of the former, the objects of study are monoidal categories,
in which the multiplicative structure is encoded by natural transformations describing
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unit and associativity laws. Any two expressions built from the monoidal structure which
are equivalent modulo the monoid axioms must be related by a sequence of these natural
transformations. However, these natural transformations are also a part of the structure.
When two different sequences of natural transformations relate the same pair of terms,
they must be equal in order for the whole structure to be coherent. In other words, any
diagram of natural transformations must commute.

In homological algebra, higher coherence for modules ensures the existence of a free
resolution of the considered algebraic structure [65]. This is also closely related to the
homotopical notion of cofibrance in Quillen model structure interpretations of categorical
structures [6, 96]. Indeed, a coherent structure has trivial homotopy in all higher
dimensions. Determining the coherence of a given structure is therefore an important
problem in categorical algebra.

Structural coherence is assured by a so-called coherence theorem, namely a result relating
local coherence to global coherence. In the case of monoidal categories, MacLane showed
that it is sufficient to assume that a small number of elementary diagrams commute to
assure coherence of the entire structure [88]. Such theorems, relating local properties to
global properties, are frequently used to prove coherence.

In the modern context of categorical algebra, structures are becoming increasingly
dependent on complicated coherence checks, see for example [99]. Indeed, the natural
notion of equivalence in categories is that of isomorphism rather than equality. This trend
is followed in the domain of homotopy type theory[112], in which the contractibility of
identity types, via higher types, is important. This idea has a natural link to calculation,
since encoded therein is the fact that an equivalence is accompanied by a proof, a
derivation, an isomorphism, providing a specific witness.

This calculatory angle provides a link to rewriting theory. Another is provided by the
idea that coherence of certain elementary shapes determines coherence of all shapes.
Indeed, a general schema in rewriting results is that a local property implies a global
property. This is achieved by studying the properties of the directed system of calculation
described by some abstract rewriting system. However, abstract rewriting theory is, in
essence, one-dimensional. Therefore the study of coherence in this context stops at the
level of consistency properties.

Abstract rewriting systems have been studied for over a century, first in a relation
algebraic setting [8] and finally ending up in the general setting of categorical algebra,
see for example [67]. The first appearance of determining coherence via rewriting,
Squier’s theorem for string rewriting [103, 104], uses one-dimensional properties to
construct the coherent presentation. This results in a free, cofibrant replacement of the
presented structure. Squier’s constructions were formulated in the categorical language
of polygraphs in [68] for monoids and in [65] for higher categories.

However, a new paradigm for abstract rewriting proofs has recently been developed.
Indeed, Kleene algebra have been used to describe the properties of abstract rewriting
systems, and classical theorems from the domain have also been stated and proved
internally to Kleene algebras [28, 109], see also [110]. These algebras, originally developed
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in the domain of formal languages [23], are in particular a generalisation of relation
algebras, which is where the link to rewriting becomes clear. Diagrammatic reasoning is
summed up in a point-free, algebraic way, replacing deduction by calculation. Indeed,
deductions follow a simple algebraic flow given by the structure of Kleene algebra.
Equipping these algebras with domain and codomain operations leads to notions of
termination, and confluence properties are encoded via semi-commutations in the algebra.
Moreover, these algebras lend themselves naturally to formalisation in proof assistants
and checkers, see for example the implementations [2] in the proof assistants Isabelle/HOL
and [94] in Coq, both of which have applications in program verification.

However, formal tools for tackling coherence problems are lacking. Indeed, while the
relational and Kleene algebraic framework for consistency proofs by rewriting have been
established, similar frameworks for higher rewriting methods have not yet been presented.
As categorical structures and type theories become more dependent on complicated
coherence checks, such a framework would provide a means by which such verifications
are automated.

In this thesis, we combine the higher dimensional approach to rewriting with this
algebraic description of the mechanisms of calculation. Having introduced the structure
of higher Kleene algebra in [17], we capture abstract rewriting theorems in all dimensions.
Moreover, we formulated and proved the coherence theorem for abstract rewriting systems
internally to these algebraic structures [16]. These higher Kleene algebra naturally appear
as power-set liftings of higher categorical structures. This provides, on the one hand, a
point-free algebraic description of the mechanisms of higher dimensional rewriting, and
on the other, a means of formalising the proofs of coherence and consistency theorems in
rewriting.

Invariants in directed topology

Algebraic invariants are used extensively in topology to provide a means of classifying
the wide array of spaces which point-set topology births. These provide obstructions for
equivalence; if two spaces have non-isomorphic invariants, they cannot be homeomorphic
spaces. Indeed, this is how the term “invariant” is derived, in the sense that they
correspond to properties of the space which are invariant under homeomorphism. A
first example of an invariant for topological spaces is that of connected components, but
classical algebraic invariants also have a spatial interpretation, for example the fact that
homology generators correspond to “holes” in the space.

In the domain of concurrency, a semantics for distributed systems of calculation is given
by the notion of directed space. For complete accounts of directed spaces and their relation
to concurrency, we refer the reader to [43, 61]. These are topological spaces augmented
by specifying a set of “permitted” paths in the space. These paths provide a notion
of direction in the space: we may only move through the space along these specified
trajectories. In concurrency theory, this directedness models the irreversibility of time.
Indeed, since each path represents a possible execution of simultaneous computations,
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moving along such a path represents an action which cannot be undone.

The study of these spaces is quite different to the study of usual topological spaces.
Firstly, (path) connectedness of points acquires a directed flavour. For example, moving
from one place to another in a city in which all streets are unidirectional is a much harder
problem than when one can travel down a street in either direction. Moreover, whereas
the objects of study in point-set topology are typically the points, or sets of points, in
the space, in the directed case we are interested in studying the properties of the directed
paths in the context of the underlying space. This is largely due to the interpretation of
paths as executions of a concurrent process: understanding the topology of the directed
paths provides insight into the process it represents [95].

Directed algebraic invariants must therefore differ somewhat from their undirected
counterparts, firstly as a consequence of the shift in objects of study. The complexity of
the problem is augmented, since we must not only attempt to understand the relation
between paths, but must do so while taking into account the topological features of
the space they move through. It is no longer the connected components of the space,
but those of path spaces, nor holes in the space, but obstructions between directed
paths. These must be measured, while simultaneously providing a means of relating
these measurements to extensions into the past or future of a path. A study of invariants
for directed spaces may be found in [97].

Homology and homotopy, two classical invariants of topological spaces, have found
directed counterparts in the form of natural homology and natural homotopy, respectively.
These, developed in [31] and inspired by ideas from [97], encapsulate the relevant invariants
for all spaces of parallel directed paths, but also the relations between them given by
future and past extensions. The notion of homotopical equivalence of paths is consistent
with the interpretation of directed spaces as semantics for concurrent processes: parallel
paths which are homotopically related correspond to equivalent executions.

These invariants capture many features of directed spaces, but were found to be insensitive
to time-reversal [87]. That is, natural homology and natural homotopy were not fine-
grained enough to detect the reversal of all paths in the considered space. As invariants
of directed spaces, this is not a desirable property. In this thesis, these invariants are
refined with an algebraic ingredient relating concatenation of paths to products of the
algebraic structures provided by homology or homotopy. We introduced this refinement
of natural homotopy and homology and its application to time-reversal in [15].

Another desirable property of invariants is that they be computationally tractable. Indeed,
one of the reasons mathematicians considered algebraic invariants for topological spaces
is that a notion of computation is provided by the algebraic structure, thereby providing
a constructive means to distinguish spaces. Classically, homology is the more tractable
invariant of topological spaces. In the case of directed spaces, natural homology is, in
practice, not computationally tractable. Indeed, not only must we calculate the homology
of each directed path space, but also the homomorphisms between the resulting homology
groups provided by past and future extensions.

The importance of these homomorphisms in the analysis of concurrent systems led us
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to consider relations between natural homology, as introduced in [32], and persistent
homology, an application of homology in data analysis [19]. Persistence theory provides
tractable methods for calculating uni-dimensional persistent homologies. In this thesis,
we relate uni-dimensional persistence to directed spaces by considering extensions along
directed paths and describe how this information may be amalgamated to recover the
whole invariant. This provides an ideological link between these two applications of
classical homology theory, while at the same time making a first step towards a more
tractable invariant for concurrent systems as modelled by directed spaces.

Goal of the thesis

In both of the domains described above, abstract rewriting and concurrency theory, a
(one dimensional) directed system expresses properties of some notion of calculation.
Higher dimensional structure is employed to study the properties of calculation, or define
invariants thereof. This thesis approaches the study of calculation in this optic.

Motivation. The objective of this thesis is to introduce a cadre of algebraic and
topological formalisation of directed calculation.

However, before tackling this objective, we provide intuition about systems of calculation,
both as rewriting and concurrent systems, for readers less familiar with these domains.
This is treated in the Preamble, in which we describe calculatory processes in a general
manner and provide a bird’s eye view of the intuitions behind coherence on the one
hand, and algebraico-topological invariants of concurrent systems on the other. It is
included to provide a moral to the mathematical story recounted in Parts I and II. Since
a non-trivial part of the pursuit of mathematics is in the development of ideas, I find
this an important aspect to include.

Coherence and rewriting. In Part I, the problem of formalising the mechanisms
of higher dimensional rewriting, and coherence, is tackled. This is accomplished by
introducing a novel algebraic structure, higher Kleene algebra, first appearing in [17].
In particular, we provide a formal, algebraic formulation of the coherence theorem for
abstract rewriting systems [16]. This provides a first step towards formalising coherence
checks in categorical algebra.

Directed algebraico-topological invariants. The goal of Part II, on the other
hand, is to refine algebraic invariants for directed spaces and provide first steps toward
the tractable computation thereof. Equipping the pre-existing invariants natural ho-
motopy and natural homotopy with an extra algebraic ingredient, we obtain a finer
analysis of the directed space, capturing time-reversal via opposition. We then further
enrich natural homotopy by introducing the notion of relative directed homotopy and
proving the existence of a long exact sequence of natural homotopy functors. These
refinements constitute the subject of [15]. Finally, the computation of natural homology is
approached by relating this invariant to the domain of persistent homology. In this thesis
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we demonstrate how natural homology may be obtained as a colimit uni-dimensional
persistent homology modules along traces in a partially ordered space.

Structure and main results

Preamble. The first part of this thesis is a description of the morals and intuitions
behind the domains of rewriting and concurrency theory followed by short descriptions of
the different models of calculation we study. Chapter 1 approaches the study of calculation,
both in rewriting and concurrent paradigms, without the associated technicalities. This
additionally serves to create the context for the main body of the thesis and in particular
formulate the problems we address.

Chapters 2, 3, and 4 provide more grounded intuitions, instantiated in the models of
calculation we study in this thesis. Chapter 2 describes the relational and algebraic aspects
of calculation. In particular, the interpretation of algebraic properties as calculatory
properties are discussed, first in the setting of abstract rewriting, then in modal Kleene
algebra. The relation description given in the former is generalised in the latter. In
Chapter 3, the same properties are described and discussed in the more spatial context
of polygraphs, first uni-dimensionally, and then in a higher setting. The intuitions
behind higher dimensional rewriting and coherence are also treated, providing context
for the problems addressed in Part I. Finally, in Chapter 4 we discuss combinatorial and
topological models of concurrent systems. This provides intuition and context for the
problems we address in Part II.

Part I. As stated above, the goal of Part I is to provide a formal algebraic context for
higher dimensional rewriting and coherence proofs.

First, in Chapter 5, we recall notions from rewriting theory, starting in Section 5.1 with
the classical, relational paradigm of rewriting. We contrast this point-free algebraic
approach to rewriting with that provided by directed graphs, also called 1-polygraphs, in
Section 5.2. It is also at this point that we recall notions from the theory of 1-categories.
Section 5.3 recalls the notion of string rewriting system and critical branchings. This
thesis does not address the string rewriting paradigm, but we include it for completeness
purposes and for contrast with the case of abstract rewriting. This section also includes
2-categorical preliminaries. Finally, Section 5.4 recalls notions from higher dimensional
rewriting, in particular relating these higher systems to abstract rewriting, as well as
recalling definitions of and notations for higher categories. In each setting, whether
relational, 1- or n-polygraphic, we recall classic rewriting theorems, namely the Church-
Rosser theorem [22], see Theorems 5.1.10 and Corollary 5.4.15, as well as Newman’s
lemma [92], see Theorems 5.1.9, and Corollary 5.4.14. These result in what we call
consistency theorems, see Theorems 5.1.11 and 5.4.16.

Chapter 6 recalls the Kleene algebraic paradigm of abstract rewriting [28, 109]. First,
in Section 6.1, we provide definitions and properties of modal Kleene algebras for
completeness purposes. In particular, Section 6.1.17 recalls a novel approach to conversion
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in modal Kleene algebra, first appearing in [16]. In Sections 6.1.21 and 6.1.22 we provide
models of modal Kleene algebras derived as relational algebras or liftings of 1-polygraphs,
the latter first appearing in [17]. Section 6.2 recalls how rewriting properties and theorems
are captured in modal Kleene algebra, in particular the Church-Rosser theorem [109],
see Theorem 6.2.10, Newman’s lemma [28], see Theorem 6.2.9.

Next, Chapter 7 recalls coherence proofs via rewriting in the spirit of [68]. First, in
Section 7.1 the coherence theorem for abstract rewriting systems represented by 1-
polygraphs is recalled, and two proofs of the coherence theorem in this context are given,
see Theorem 7.1.16. In particular, we recall the notion of strategy [67]. Section 7.2
briefly contrasts this with the string rewriting approach. Finally, in Section 7.3 the
abstract coherence theorem is formulated in the higher dimensional setting, and a novel
link is established between these higher systems and the coherence problem for abstract
rewriting systems, see Theorem 7.3.6.

Chapter 8 is the first wholly original chapter of this thesis. The goal is to provide a
succinct account of the coherence theorem in the two-dimensional via Kleene-algebraic
structures. First, in Section 8.1, we recount a novel “vertical” approach to coherence, in
order to relate the polygraphic paradigm of coherence to that of higher Kleene algebra.
We also prove vertical versions of the Church-Rosser theorem and Newman’s lemma, see
Theorems 8.1.4 and 8.1.7. In Section 8.2 we introduce the notion of globular 2-Kleene
algebra [17] and briefly describe their structural properties and the model given by
2-polygraphs, see Proposition 8.2.11, or Section 9.1.19 for more details. Next, Section 8.3
recounts the use of these algebras as a paradigm for coherence proofs with rewriting
methods [17]. In Section 8.4, we formalise the notions of section and rewriting strategy,
showing that a strategy corresponds to any skeleton of the iterative exhaustion. We
then prove that confluences in the iterative exhaustion of an element correspond modally
to the equivalence it generates, see Lemma 8.4.4. In Propostion 8.4.5 we prove that
this novel definition of strategy has the desired properties with respect to normal forms
and transitive closure. These results, as well as the definitions from this section, first
appeared in [16].

Finally, in Section 8.5 we prove the abstract coherence theorem in the context of globular
2-Kleene algebras. First, we prove a normalising, strategic Newman’s lemma:

8.5.1 Theorem (Coherent normalising Newman’s lemma [16]). Let K be a
Boolean globular 2-Kleene algebra such that

i) (K0,+, 0,�0, 10,¬0) is a complete Boolean algebra,

ii) K1 is continuous with respect to 0-restriction, that is for all ψ,ψ′ ∈ K1 and
(pα)α ⊆ K0 we have ψ �0 ∨pα �0 ψ

′ = ∨ (ψ �0 pα �0 ψ
′).

Let φ ∈ K1 be convergent and σ be a skeleton of exh(φ). If A is a local confluence filler
for (φ, φ), then |Â∗1〉1(σ �0 σ) ≥ φ∗0 �0 φ

∗0.

As a direct consequence, we obtain the main theorem of this chapter, stated below.
We consider an element A of a 2-Kleene algebra, which can be thought of as a set of
two-dimensional directed tiles. By hypothesis, this element a local confluence filler for
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a (one-dimensional) element φ, as defined in Section 8.3.1, i.e. the tiles in A fill the
local confluence diagrams associated to φ, which is thought of as a set of transitions
or rewriting rules. A strategy σ, as defined in Section 8.4, associated to a convergent
element φ is thought of as a skeletal subset of normalising paths. The conclusion of the
theorem, an inequality in a 2-Kleene algebra, states that the equivalence generated by
φ, denoted by φ>, is included in the pre-image of confluences in the strategy under the
completion Â∗1 of A, the latter being defined in Section 8.3.2. In short, this means that
every zig-zag in φ is paved to a confluence in σ by glueing the (directed) tiles in A:

8.5.2 Theorem (Abstract coherence theorem [16]). Let K be a Boolean globular
2-Kleene algebra satisfying the additional hypotheses in Theorem 8.5.1 and φ ∈ K1

convergent. Given a normalisation strategy σ and a local confluence filler A for (φ, φ),
we have

|Â∗1〉1(σ �0 σ) ≥ φ>0 = (φ+ φ)∗0 .

Chapter 9 generalises this to higher dimensions, while providing a more in-depth treatment
of the algebraic structure of higher Kleene algebra. Section 9.1 introduces n-Kleene
algebras and their variants. In particular, a full account of the polygraphic model for these
structures may be found in Section 9.1.19, and proving in Proposition 9.1.20 that the
power-set lifting of a free n-category is indeed a higher Kleene algebra. These definitions
appear in [17].

In Section 9.2 we first provide a full account of coherent rewriting in higher Kleene
algebras, and then prove coherent versions of the Church-Rosser theorem, that is, with
higher witnesses. First we give a proof by external induction, see Proposition 9.2.8 [17],
and then using the notion of induction internal to Kleene algebras, i.e. via the Kleene-
star:

9.2.9 Theorem (Coherent Church-Rosser in globular n-MKA [17]). Let K
be a globular n-modal Kleene algebra and 0 ≤ i < j < n. Given φ, ψ ∈ Kj and an
i-confluence filler A ∈ K of (φ, ψ), we have

|Â∗j 〉j(ψ∗iφ∗i) ≥ (φ+ ψ)∗i ,

where Â is the j-dimensional i-whiskering of A. Thus Â∗j is an i-Church-Rosser filler
for (φ, ψ).

In Section 9.3 we describe the notion of termination in this higher algebraic setting and
prove a coherent version of Newman’s lemma:

9.3.2 Theorem (Coherent Newman’s lemma for globular p-Boolean MKA [17]).
Let K be a globular p-Boolean modal Kleene algebra, and 0 ≤ i ≤ p < j < n, such
that

i) (Ki,+, 0,�i, 1i,¬i) is a complete Boolean algebra,
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ii) Kj is continuous with respect to i-restriction, i.e. for all ψ,ψ′ ∈ Kj and every
family (pα)α∈I of elements of Ki such that supI(pα) exists, we have

ψ �i supI(pα)�i ψ′ = supI(ψ �i pα �i ψ′).

Let ψ ∈ Kj be i-Noetherian and φ ∈ Kj i-well-founded. If A is a local i-confluence
filler for (φ, ψ), then

|Â∗j 〉j(ψ∗iφ∗i) ≥ φ∗iψ∗i ,

i.e. Â∗j is a confluence filler for (φ, ψ).

Section 9.4 presents the abstract coherence theorem for higher Kleene algebras as a
consequence of that proved in Chapter 8, after generalising the notion of strategy to this
setting:

9.4.3 Theorem (Abstract coherence theorem for HKA). Let K be a p-Boolean
globular n-Kleene algebra satisfying the additional hypotheses in Theorem 9.4.2 and
φ ∈ Kj convergent. Given a normalisation strategy σ for φ and a local i-confluence filler
A for (φ, φ), we have

|Â∗j 〉j(σ �i σ) ≥ φ>i = (φ+ φ)∗i .

Finally, Section 9.5 checks the consistency of the above theorems with those in the
polygraphic paradigm via the model described in Section 9.1.19. In particular, we prove
the following:

9.5.5 Proposition ([17]). With Γ′ := (Γc)∗n, the following equivalences hold:

i) Γ is a (local) confluence filler for P ⇐⇒ Γ′ is a (local) (n− 1)-confluence filler
for ((P cn)

n−1
, P cn),

ii) Γ is a Church-Rosser filler for P ⇐⇒ Γ′ is an (n− 1)-Church-Rosser filler for
((P cn)

n−1
, P cn).

and use it to obtain Theorems 9.5.6 and 9.5.7, which state that the coherent, Kleene
algebraic versions of Newman’s lemma, Theorem 9.3.2 and the Church-Rosser theorem,
Theorem 9.2.9, correspond to their polygraphic counterparts.

The final chapter describes a work in progress between myself, P. Malbos, D. Pous and
G. Struth, based on [14, 41]. We describe the notions of catoid and modal quantale in
Sections 10.1 and 10.2 before treating their n-dimensional analogues in Sections S:2-
lr-msg and 10.4, respectively. (Higher) catoids generalise (higher) categories, while
(higher globular) quantales constitute a special case of (higher globular) Kleene algebras.
Finally, Section 10.5 presents a correspondence theorem for (higher) power-set quantales,
providing a formal justification for the axiomatisation of higher Kleene algebras and their
use in the domain of higher dimensional rewriting:

10.5.1 Theorem (Correspondence theorem for power-set n-quantales).

i) Let X be a local n-catoid. Then (PX,⊆,�i, Ei, `i, ri)0≤i<n is an n-quantale.
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ii) Let PX be an n-quantale in which Ei 6= ∅. Then X is a local n-catoid.

From this we deduce that every n-category lifts to an n-quantale, see Corollary 10.5.2.

Part II. The objective of Part II is twofold. Firstly, we address the problem of time-
reversal invariance of natural homotopy and natural homology, solving it by adding
natural structure to the invariants. Secondly, we link persistent homology to natural
homology, establishing an ideological link between these two theories and showing that we
can recover natural homology, an untractable invariant, from uni-dimensional persistent
homologies.

Chapter 11 provides preliminaries for completeness purposes. First, in Section 11.1, we
recall the notion of group object and the fixed object slice category, before describing
the structural properties of group objects therein [93], see Section 11.1.3. We then recall
the definitions of natural systems, first appearing in the cohomology theory of small
categories [5], and an augmentation thereof called lax systems in Section 11.2. The latter
are due to Porter [93], and combine the notion of natural system with the structure of a
lax functor. Section 11.3 describes how this extra structure defines a composition pairing
on a natural system, and that lax systems are equivalent to these objects. Tying all of
this together, in Section 11.4 we show that natural systems with composition pairings
are equivalent to group objects in the corresponding fixed object slice category.

In Section 11.5, we recall from [62] the definitions of semi-exact and homological catege-
ories, exact sequences and show that the categories of groups and of pointed sets can be
embedded in the category of actions, thus providing a common codomain for natural
homotopy functors of all dimensions. This results in Proposition 11.5.7, a consequence
of a result from [62], in which we show that we obtain a long exact sequence in the
category of actions. In Section 11.6, we recall notions from directed topology. For this,
we first recall the notion of directed space, see [43, 61], and then define the invariants,
first introduced in [31]. In particular, we recall the trace category

−→
P(X ) associated to a

directed space X and the nth natural homotopy and natural homology functors, denoted
by
−→
Pn(X ) and

−→
Hn(X ), respectively. Finally, in Section 11.7, we recall the basics of

persistence theory [19].

Chapter 12 contains the first original material in this part of the thesis. Its goal is to
solve the problem of time-reversal invariance, which is outlined in an introductory section.
In Section 12.1, we apply the results from Section 11.1 and 11.2 to the natural systems
defined by the natural homotopy and homology functors. This results in Theorems 12.1.3
and 12.1.4, which state that we may augment natural homotopy with an extra algebraic
ingredient: a composition pairing.

Putting together these theorems, as well as the correspondence recalled in Section 11.4
from [93], we obtain Theorem 12.1.5, which relates natural homotopy to group or
split objects in CatX/

−→
P(X ), the category of categories above

−→
P(X ) which preserve its

elements. This provides an interpretation of natural homotopy, a functor, as a category
above

−→
P(X ) with the same elements. We obtain a corresponding result for natural

homology.
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In Section 12.2 we begin by formally defining the time-reversal of a dispace X , denoted
by X ], in Section 12.2.1, and then in Section 12.2.2 we define the notion of (strong)
time-reversal of functors dTop → Cat with respect to opposition in Cat. We then
show that without composition pairings, the natural homotopy and homology functors
associated to a dispace do not detect time-reversal. This time-symmetry of the original
invariants is the subject of Section 12.2.3.

Section 12.2.4 contains the main theorems of this chapter, namely Theorems 12.2.5
and 12.2.6. These express that when equipped with a composition pairing, the invariants
capture are strongly time-reversal, i.e. that we capture time-reversal by considering
the opposite category of CnX obtained via Theorem 12.1.5. In short, we show that as
group or split objects in CatX/

−→
P(X ), natural homotopy captures time-reversal via

opposition:

12.2.5 Theorem ([15]). Given a dispace X = (X, dX), CnX ] and (CnX )o are isomorphic
in Gp(CatX/

−→
P(X ])) for all n ≥ 2, and in Split(CatX/

−→
P(X ])) for n = 1. In particular,

the functors Cn− are time-symmetric for all n ≥ 1.

12.2.6 Theorem ([15]). For any n ≥ 0, the functor Cn− : dTop → Cat is strongly
time-reversal.

We conclude Section 12.2 defining a notion of time-reversal relative to the category
opNat(Act) of natural systems of actions and proving Theorem 12.2.8, which states that
time-reversal of a functor dTop→ Cat is equivalent to the notion for opNat(Act).

Finally in Section 12.3, we focus on further enriching natural homotopy by defining a
notion of relative natural homotopy. In particular, we prove Theorem 12.3.2, which states
that a long exact sequence of homotopy groups may be constructed from a pair (X ,A)
of dispaces.

12.3.2 Theorem ([15]). Let X be a dispace and A be a directed subspace of X . There
is an exact sequence in NatSys(

−→
P(A),Act):

· · · →
−→
Pn(A) →

−→
Pn(X ) →

−→
Pn(X ,A)

∂n→
−→
Pn−1(A) → · · ·

· · · →
−→
P2(A)

v→
−→
P2(X )

f→ (
−→
P2(X ,A),

−→
P2(X ))

g→
−→
P1(A)

h→
−→
P1(X ) →

−→
P1(X ,A) → 0.

We apply this to the special case of fibrations, resulting in Theorem 12.3.5 [15].

The final chapter of Part II, Chapter 13, addresses thee problem of calculating natural
homology. It contains original contributions from ongoing work. This is a very large
invariant, limiting its practicality. We study links between natural homology and
persistent homology, the latter being tractable in most cases. First, in Section 13.1,
we consider an example in order to illustrate the problem of obtaining filtrations from
directed spaces without using traces. In Section 13.2, we show that natural homology
is in fact a persistence object when considering partially ordered spaces, a class of
directed space including cases of the most practical interest. This is essentially due to the
observation that the factorisation category of the trace category of a partially ordered
space is a poset:
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13.2.4 Proposition . For a pospace X , P(X ) is isomorphic to F
−→
P(X ).

Next, we Proposition 13.2.6, which states that each trace yields a uni-dimensional
persistent homology module. We apply this to the motivational example in Section 13.2.7
before turning to the question of amalgamating this uni-dimensional information. This is
addressed in Section 13.3, but first we prove some results concerning colimits of posets,
the first of which, Proposition 13.3.2, is folkloric, stating that a poset is the colimit of its
chains, whereas the second Proposition 13.3.3, refines this for maximal chains. Next, in
Section 13.3.4, we apply these colimit constructions to functors whose domains are posets
and whose codomains are a fixed category C. This gives the following result:

13.3.5 Proposition . Let P be a poset, G a diagram whose colimit is P , D : P → C
a functor and F the diagram of functors given by restricting D along G. If C is poset
co-complete, we have

colim
Pers(C)

F = D.

As direct consequences of the above propositions, we obtain the main theorem of this
chapter, which states that natural homology for pospaces is recovered as a colimit of
persistence modules in various ways:

13.3.7 Theorem . Let X = (X, dX) be a pospace and α a point in X.

i) The natural homology of X is the colimit in Pers(VectK) of the persistent homology
along each of its traces.

ii) The natural homology of X is the colimit in Pers(VectK) of the persistent homology
its of its maximal traces, seen as chains in P(X ), completed with pullbacks (resp.
quasi-pullbacks).

iii) The natural homology of the up-set of α, seen as a constant trace, in P(X ) is the
colimit in Pers(VectK) of the persistent homologies of the traces passing through
α or of the maximal chains passing through α completed with pullbacks or quasi-
pulbacks.
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Chapter 1.
Calculation, direction and choice

Calculation is ubiquitous in mathematics and computer science. The very first thing one
learns in school about mathematics is how to compute sums. Formally, this consists in
taking an expression such as 2 + 5 + 4, i.e. a term built with natural numbers and an
addition symbol +, and reduce it to a single number: 11. Hidden in this first exposure
to mathematics lie the formal precepts of calculation.

First, we understand that when calculating with natural numbers, a notion of direction
is involved. Indeed, while it is conventional in grade school to use the equality symbol
=, calculation is directed: we should follow equalities toward a term of size one. This
suggests that we are implicitly using something other than equality, namely a directed
relation →.

Next, we learn that the choices we make while calculating do not affect the final outcome.
Indeed, we observe that first adding 2 and 5, and then adding 4 to their sum is equivalent
to first adding 5 and 4, and then summing the result with 2. The situation may be
summed up by the following diagram:

2 + 5 + 4

yy %%

7 + 4

&&

2 + 9

xx

11.

Since calculations flow along the directed relation →, we call the top part of the diagram
a branching and the bottom part a confluence, terminology borrowed from the topology
of rivers. The fact that these two calculations produce the same result can be seen as
a consequence of associativity of addition, but also reflects an important calculatory
property. Indeed, if every branching is confluent, the choices we make when calculating
do not affect the final outcome, i.e. calculation is deterministic. As stated above, we are
asked to always reduce the size of the term. This reflects the property of termination,
namely that our calculations will eventually end and an answer may be given.

Finally, we understand that this means that any two terms which lead to the same answer

21
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are equal. This is somewhat obvious, since we know what equality means. However, in
terms of calculation, we find that in order to show that 2 + 5 + 4 is equal to 2 + 7 + 1 + 1,
it suffices to show that our calculations toward a term of size one both end up at the
same answer. That is, it is not necessary to exhibit equalities in the style of

2 + 5 + 4 = 2 + 5 + 2 + 2 = 2 + 7 + 2 = 2 + 7 + 1 + 1,

but rather perform calculations of the form

2 + 5 + 4→ 11← 2 + 7 + 1 + 1.

This means that our mode of calculation is consistent with the notion of equality.

Of course, these facts are not made explicit to children, already coping with their first
experience of mathematical abstraction. However, these basic principles of calculation
are central to the theory of abstract rewriting, a formal description of calculation.

The whole class is performing these calculations at the same time. In an ideal world,
each of the students performs the steps and reaches the desired answers before the bell
rings. In practice however, certain students may get stuck, ask for help, or even try to
glean the answer from their neighbour’s sheet. Two students sitting next to each other
may both be stuck while the teacher is busy, and each is waiting for the other to perform
the calculation in order to copy it on their own sheet. This leads to deadlock, a situation
in which calculation stops.

Further, if a student produces an error it could be replicated by others copying the
incorrect answer. This is of course remedied in exam conditions by making sure that
students cannot see each other’s sheets, making the calculations mutually exclusive,
in that for the duration of the test, the students cannot access each other’s written
results.

This is our first exposure, whether we realise it or not, to concurrency. This is a domain
of theoretical computer science in which calculations, or more generally actions, are being
performed by independent agents simultaneously. Such a situation is again modelled in a
directed way. Indeed, once an action has been performed, it cannot be undone. This
means that, starting at some state of the system, we can only move to those states which
lie in the direction given by elapsing time.

In this thesis, we study both types of directed systems, namely those arising from systems
of calculation and those resulting in the study of simultaneous actions from independent
agents.

1.1. Abstract transformations

When considering calculation in an abstract setting, we no longer care what objects we
are performing calculations on, a set X suffices, nor what the calculation steps actually
do, relying instead upon some notion of transformation between elements of X.
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1.1.1. Equivalence and calculation. Calculation usually relates to a notion of
equivalence. Indeed, calculation is the answer to the indeterminacy of equivalence in the
following sense. An equivalence relation on a set partitions the set into equivalence classes.
These are sets of elements which should be thought as “the same element” under the
considered notion of equivalence. However, when comparing elements of X, equivalence
gives us no tools to choose how, if possible, to move from one to the other via equivalent
elements. Using a directed relation whose symmetric, transitive and reflexive closure (see
Section 5.1) corresponds to the considered equivalence relation provides a constructive
approach to this quandary.

We distinguish the equivalence underlying the system of calculation and the syntactic
equality in X notationally. When x and y denote the same element of X, i.e. are
syntactically equal, we write x = y. When x and y are related by the notion of
equivalence underlying the system of calculation, we write x ≡ y.

1.1.2. Direction. The transformations given by the system of calculation express
equality, but their directedness allows us to move through the set X and produce an
answer. If this were not the case, we would perhaps make choices that lead us further from
an output than closer. For example, consider x and y in X such that we can transform
x into y and vice versa. This results in an infinite loop of unhelpful calculations.

1.1.3. Calculation as transition. An (abstract) system of calculation on X is the
given of a set of rules which tell us how to reduce elements of X to others. Due to the
directedness of these rules, we often notationally denote the phrase “x is reduced to y”
by the symbols

x→ y.

We say that x is the source of the reduction step and that y is its target. These rules
generate sequences of calculations, which we call reduction sequences. Any calculation
allowed by the system corresponds to such a sequence. For example, to reduce 2 + 5 + 4
to 11, we first apply the rule 2 + 5 + 4→ 2 + 9 followed by the rule 9 + 2→ 11. If there
exists a reduction sequence from x to y, we write

x
∗→ y

to distinguish this from a single, atomic calculation. We again say that x (resp. y) is the
source (resp. target) of the reduction sequence.

Note that every reduction step is a reduction sequence, but the converse is not true.
Furthermore, we will also write x ∗→ y when x = y, i.e. x and y are the same element of
X. The reduction sequences therefore correspond not only to (non-trivial) sequences of
rules, but also include the syntactic equality in X.

1.1.4. Spatial interpretation of calculation. We now also have a spatial inter-
pretation of our system: elements of X are thought of as points or nodes, while reductions
are thought of as directed edeges between them. A reduction sequence then corresponds
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to a directed path in the space. When we forget about the directedness of steps and paths,
we recover the equivalence relation underlying the system of calculation, its equivalence
classes being given by connected components.

1.1.5. Concurrent computation. Turning to the notion of simultaneous calcula-
tion studied in the domain of concurrency, the abstract transformations we study have
a different interpretation. When studying a system of independent agents performing
actions at the same time, we may consider the state of the system at a given time. The
state corresponds to which agents have performed which actions before the considered
moment.

Instead of being reduction rules, the transformations in concurrency theory are interpreted
as a transition from one state to another. Because of the irreversibility of an action,
these transformations are again directed.

One of the main applications of concurrency theory is in the domain of parallel pro-
gramming. This either involves time-sharing on a single processor, that is a single
processor performing several tasks at the same time, or several processors performing
actions independently, but sharing the same memory. In both cases, errors can occur
if these actions are not coordinated. A simple example consists in two independent
threads allocating different values to a common variable in parallel; the end result is not
deterministic.

1.2. The problem of choice

When calculating, we may be confronted with several choices. The properties of the
considered system with respect to these choices is central to the abstract study of
calculation. Given an abstract system of calculation → on a set X, we may have several
choices of how to reduce a given element x via reduction sequences:

x∗

~~

∗
}}

· · · ∗
##

∗

""

x1 x2 · · · xk−1 xk.

This situation represents a conflict in the system: from a single element, several distinct
answers are valid reductions. These k-fold branchings will be studied when considering
coherence properties of the system, but a simpler form of conflict suffices for a first study
of the consistency of the system. First, we will treat the simplest case, namely that of
binary choice.

1.2.1. Branchings. A branching of the system is represented by the following dia-
gram:

x
∗
~~

∗
  

x1 x2
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We say that x is the source of this branching; it is the element at which the conflict takes
place. This represents a non-deterministic behaviour, which is not desirable in a system
of calculation.

While studying the branchings in a system is important, a recurring theme in the abstract
study of calculation is taking local properties of the system to global properties. For this
reason, we may be led to study local branchings. These are branchings of the form

x

~~ !!

x1 x2,

that is branchings in which both forks of the conflict are reduction steps, rather than
sequences. We will see that consistency proofs allow us to go from resolution of local
branchings to resolution of (global) branchings.

1.2.2. Branchings and equivalence. An abstract system of calculation is under-
lying an equivalence relation. What this effectively means in terms of calculations, is
that whenever two (distinct) elements x and y are equivalent, i.e. x ≡ y, either x = y or
there exists a zig-zag sequence of calculations connecting them, as depicted below:

x1

∗
��

∗
  

x3

∗
~~

∗

��

· · · xk−2

∗

~~

∗
$$

xk
∗
||

∗
  

x x2 · · · xk−1 y.

This means that the underlying notion of equivalence is given by a sequence of branchings
in the system of calculation. To simplify notation, we will write x ∗↔ y to denote that x
and y are equivalent, that is, either x ≡ y or are the same element of X, i.e. x = y.

1.2.3. Interleaving actions. When only considering one agent performing actions
a1, a2 we obtain a linear sequence

· a1
// · a2

// ·

However, when two or more agents are involved, there is more than one way of interleaving
their actions.Indeed, Bob may perform the action b1 before Alice has performed action
a1, or vice versa. These execution sequences will be denoted by words made up of the
actions, for example a1.b1.b2.a2 is the execution of the concurrent system in which Alice
performs her first task, followed by Bob performing both of his, and then finally Alice
completing her second task. Denoting Alice by A = {a1, a2} and Bob by B = {b1, b2},
we denote the concurrent system they form by A || B.

When designing a concurrent program, certain execution sequences are undesirable. For
example, as described above, errors can occur due to certain actions being inconsistent.
One way of verifying the correctness of such a program is to check that the program
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terminates and does what it is designed to do no matter which order the actions
are performed. These different schedulings grow exponentially with the size of the
program.

1.2.4. Spatial interpretation of concurrency. We sum up all of the possibilities
by a spatial interpretation of the situation. Here, the points or nodes correspond to
concatenations of actions, while edges correspond to actions. This space will be referred
to as the interleaving graph in what follows. The concurrent behaviour is expressed by
their actions lying along independent axes in the space. In the example of Alice and Bob
given above, we obtain:

· a1
// · a2

// ·

· a1 //

b2

OO

· a2 //

b2

OO

·

b2

OO

· a1
//

b1

OO

· a2
//

b1

OO

·

b1

OO

When moving through the space, we are limited by the irreversibility of time; we must
always move either upwards or to the right. The paths through the space that respect this
direction correspond to different execution sequences of the set of actions {a1, a2, b2, b2}.
In this way, this space sums up the possible schedulings associated to the system.

1.3. Execution properties

1.3.1. Confluences. As outlined above, branchings represent a conflict in our system
corresponding to a choice in the process of calculation. This indeterministic behaviour is
undesirable, since when we calculate we expect a unique answer.

As we have a notion of conflict in calculation, we also have the dual notion of resolution.
Given elements x1, x2 and x′, a confluence is a situation of the form

x1

∗ !!

x2

∗~~
x′.

We say that x′ is the target of the confluence. Note that this is the opposite diagram, in
the sense of categorical duality, to the diagram representing a branching. This duality
carries over to the interpretation of branchings as conflicts: confluences are situations
representing resolutions in the system, in the sense that from two distinct elements, a
common (intermediate) answer may be produced.
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1.3.2. Resolving conflicts. This becomes more evident when combined with the
notion of branching. A branching (resp. local branching) is confluent when there exists a
confluence completing it, as represented in the following diagram:

x
∗
}}

∗
!!

x1

∗ !!

x2

∗~~
x′.

(resp.

x

}} !!

x1

∗ !!

x2

∗~~
x′.

)

Such diagrams are known as confluence diagrams. A conflict appears at the element x,
and is resolved to produce, from the distinct answers x1 and x2, a single output x′.

1.3.3. Confluence and consistency. The notion of confluence of a branching
brings us to the first consistency properties of a system of calculation. A system
(X,→) is confluent (resp. locally confluent) if every branching (resp. local branching)
is completed by a confluence. We may also choose to call these properties directed
consistency (resp. local directed consistency) since they express a (directed) consistency
or compatibility of the rules amongst themselves.

A zig-zag sequence is confluent when there exist directed sequences reducing x and y to
a common element z, as illustrated below:

x1

∗
~~

∗
!!

∗
��

· · ·
∗
!!

xk
∗
||

∗
  

x

∗
,,

x2 · · · xk−1 y.

∗
rrz

An abstract system of calculation in which every zig-zag sequence is confluent is said to
have the Church-Rosser property. We also say that such an abstract system of calculation
is consistent. Indeed, this shows a strong compatibility between the reduction rules
and the equivalence which is derived from them in the sense that whenever there is an
undirected path connecting two elements, there are directed sequences reducing them to
a common answer.

1.3.4. Consequences for formal calculation. While confluence, i.e. directed
consistency, expresses a compatibility of the directed system with itself, the Church-
Rosser property expresses a compatibility of the directed system with the undirected
equality it generates. In particular, it means that any equivalence can be constructively
computed using the directed calculatory steps. This in turn means that the system is
deterministic. Indeed, it assures that if a “final” answer can be reached, it is unique.
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In terms of automatising calculations, this means that we can freely generate terms
and then use the system of calculation to reduce any term to a unique answer. The
calculations can thus be performed by a machine.

1.3.5. The Church-Rosser theorem. A classical result in rewriting theory, the
Church-Rosser theorem [22], states that confluence of a system of calculation is equivalent
to it having the Church-Rosser property. In other words, directed consistency of a system
assures that it is consistent.

1.3.6. Termination. As described above, confluence properties provide checks for
deterministic behaviour of a system of calculation. However, for such a system of
calculation to be useful, we must eventually reach an element which is the unique
output of the computation. This is formalised using the notions of normal form and
termination.

A normal form is an element z which cannot be reduced by any reduction rule in the
system. More precisely, any element x such that x ∗→ z must be syntactically equal to z,
i.e. x = z in X. Given some element x ∈ X, a normal form of x is an element x′ such
that x ∗→ x′ and x′ is a normal form. When x has only one normal form, we will denote
it by x̂.

As mentioned above, confluence of the system (X,→) ensures unicity of normal forms.
Existence of normal forms, on the other hand, is ensured by the property of termination.
The system (X,→) terminates or is Noetherian if there are no infinite reduction sequences.
This means that there is no sequence (xi)i∈N of syntactically distinct elements of X such
that xi → xi+1 for all i ∈ N. In a terminating system of calculation, a normal form may
be reached from any element.

1.3.7. Noetherian induction. Termination, or Noethericity, not only provides an
existence criterion for normal forms, but also gives access to a useful mathematical tool,
namely Noetherian induction. Rather than using well-founded induction on the length of
a reduction sequence, we may reason by the distance of a given element x from a normal
form. This is in fact the dual of well-founded induction: instead of proving a property
for minimal elements and successors, we prove a property for maximal elements and
predecessors.

1.3.8. Newman’s lemma. In particular, termination and local consistency imply
directed consistency, i.e. confluence, from local directed consistency, i.e. local confluence.
This result, Newman’s lemma [92] states that given a locally confluent and terminating
system of calculation, we may deduce (global) confluence thereof. This is practically
useful, as it reduces the consistency check to local branchings.

1.3.9. Consistency theorem. A recurring theme in the study of calculation is
transporting local properties to global properties using the structure of the considered
system. Combining the two previous results, we obtain just such a local-to-global theorem,



1.3. EXECUTION PROPERTIES 29

which we call the abstract consistency theorem in this thesis. This is on the one hand to
underline the use of this abstract study of calculation in practice, but also to compare
this process to coherence theorems, central to this thesis and outlined in the following
section.

The theorem states that given a terminating system of calculation, it suffices to verify
consistency locally and directedly in order to conclude consistency of the entire system;
it is a direct consequence of Newman’s lemma and the Church-Rosser theorem. This
combination of these classical theorems will be reflected in the proofs of coherence in
calculation.

1.3.10. Consistency in concurrency. When considering concurrent systems, the
notion of consistency is also related to confluence-like shapes. Indeed, in this context,
consistency should rather express that given two interleavings of actions a and b,

· a
// · b

// · and · b
// · a

// ·

that the sequences a.b and b.a produce the same outcome. In this case, we say the actions
are independent. A simple example is given by the allocations x = 4 and y = 1. Since
these actions affect different parts of the memory, they can be executed in any order
without causing an issue. This leads to the notion of synchronisation: the sequences a.b
and b.a are synchronized when they are independent. Formally, this means equipping
interleaving paths in the state-space with an equivalence relation ∼. The situation
a.b ∼ b.a is represented by the following diagram:

·
∼

a
// ·

· a
//

b

OO

·,
b

OO

An interleaving graph equipped with such an equivalence relation is called an asynchronous
graph.

This local consistency can be extended to paths of arbitrary length. Indeed, consider the
situation in which Alice is performing the sequence of actions {a1, a2} interleaved with
Bob performing actions {b1, b2}. If each of Alice’s actions are independent to those of
Bob, we may conclude that any interleaving of their actions are pairwise consistent, see
the diagram below.

· a1
//

∼

· a2
//

∼

·

· a1 //

b2

OO

∼

· a2 //

b2

OO

∼

·

b2

OO

· a1
//

b1

OO

· a2
//

b1

OO

·

b1

OO
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For verification of concurrent programs, it now suffices to check only one execution
sequence in each equivalence class under the extension of ∼ to paths in the interleaving
space to assure that the program is correct. A complete study of asynchronous graphs
and verification of concurrent programs can be found in [43].

1.3.11. Mutexes. To avoid that dependent actions take place simultaneously, we
employ mutexes, a term derived from mutual exclusion. These can be thought of as
resources which only one agent may possess at a given time. Given a mutex m, an
agent can either lock or release the mutex; these actions are denoted by pm and vm,
respectively1. For example, for actions a and b, we can consider the concurrent system
{pm, a, vm} || {pm, b, vm}. This situation is described in the diagram below:

·
pm

// · a
// · vm

// ·

· pm //

vm

OO

· a //

vm

OO

· vm //

vm

OO

·

vm

OO

· pm //

b

OO

· a //

b

OO

· vm //

b

OO

·

b

OO

· pm
//

pm

OO

· a
//

pm

OO

· vm
//

pm

OO

·

pm

OO

There are now only two execution sequences, the two outer edges of the above square,
and they are not synchronized. Indeed, whichever agent takes the mutex m first must
complete their task, i.e. a or b, and release the mutex before the other agent may begin.
We again refer to the book [43] for a more complete treatment.

1.3.12. Deadlocks. While mutexes can be used to differentiate execution sequences
producing different results, they can cause problems for termination of the program.
Indeed, given mutexes m and µ, consider the concurrent system in which Alice and Bob
are given the tasks

A = {pm, pµ, vm, vµ} || {pµ, pm, vµ, vm} = B,

i.e. only lock and release actions. The asynchronous graph associated to this system is
given below:

1In Dutch, preneer and vrijen mean take and release, respectively.
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·
pm

//

∼

·
pµ

// ·
vµ

// · vm
//

∼

·

· pm //

vµ

OO

· pµ //

vµ

OO

· vµ //

vµ

OO

�

vµ

OO

vm // ·

vµ

OO

· pm //

vm

OO

· pµ //

vm

OO

· vµ //

vm

OO

·

vm

OO

vm // ·

vm

OO

·

∼

pm //

pm

OO

pµ //

pm

OO

· vµ //

pm

OO

·

vm

OO

pm //

∼

·

pm

OO

· pm
//

pµ

OO

· pµ
//

pµ

OO

· vµ
//

pµ

OO

·

pµ

OO

vm
// ·

pµ

OO

The execution sequences pm.pµ and pµ.pm are independent since the mutexes are distinct.
However, if either of those sequences is executed, the process stops. Indeed, Alice is
waiting to receive µ in order to release m, while Bob is waiting to receive m in order to
release µ. This situation is known as deadlock, and corresponds to the circled point in
the above diagram. These situations are clearly undesirable: the program described by
the above asynchronous graph contains schedulings which will lead to non-termination.
Dually, the square point is unreachable.

1.4. Coherent calculation

1.4.1. Comparing paths. Consistency in calculation provides a criterion by which
to measure the legitimacy of a system of calculation with respect to a notion of equivalence
on the considered elements. The consistency theorem for abstract systems of calculation
essentially states that under the hypothesis of termination and local confluence, any
sequence of calculatory steps will result in the same unique answer.

Spatially interpreted, this means that we can “slide” the nodes in the graph representing
the system along the directed paths corresponding to reduction sequences while con-
tracting the edges along the given direction until we are left with only one point. We
illustrate this with the simple example of two calculatory steps:

2 + 5 + 4

yy %%

7 + 4

&&

2 + 9

xx

11

7 + 4

##

2 + 9

{{

11.
11.
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Spatially, consistency may therefore be interpreted as a directed contractibility with
respect to points, i.e. objects of dimension zero. This is the calculatory parable of the
notion of equivalence class. Indeed, the properties of an equivalence relation allow one to
consider each equivalence class as an element in a consistent way, while the property of
convergence, i.e. termination and confluence, of a calculatory system allow us to contract
the equivalence classes along directed paths to the chosen representative, i.e. the unique
normal form in each class.

However, while contracting in this way, we break certain topological features of the
calculation space. Indeed, in the above example, the “hole” formed by the confluence
diagram on the left is broken in the middle diagram. This is therefore not a well
defined notion of topological contractibility. This topological inconsistency is related
to the freeness of the system of calculation in a way we make clear in the following
paragraphs.

1.4.2. Free structures. In the running example of computing sums, expressions
such as 2 + 5 + 4 are freely generated by natural numbers N. Indeed, the expression
2 + 5 + 4 can be thought of as the word 2.5.4. We then equip the set W(N) of such
expressions or words with the usual notion of equivalence ≡ for addition of natural
numbers. The quotient of W(N) by ≡ is isomorphic to the set N of natural numbers:
the equivalence class associated to some number n being represented by the singleton
word n.

The notion of calculation comes in when we also equip the set W(N) with a sub-system
of directed rules, expressing calculation toward the representative of each class. These
rules freely generate reduction sequences. However, certain distinct reduction sequences
calculate the same output from the same input. In this sense, we may consider that the
rules themselves are subject to some notion of equivalence.

1.4.3. Higher witnesses. The advantage of using free structures is that they are
in some sense automatisable. Given a set of letters, in our case the set of natural
numbers, we can automatise the construction of the words, or expressions, in the set
W(N). However, when the rules that we use are not freely generated, we must specify all
of them, a time-consuming and non-automatisable process.

For this reason, the goal is to build, step by step, higher relations from the one dimensional
information given by the system, which are themselves subject to even higher relations.
In this way, the entire system of calculation is freely generated.

1.4.4. Higher formalisation. The 1-dimensional properties and mechanisms of
calculation can be expressed in relational or Kleene algebraic settings. These algebraic
structures have been extensively formalised in interactive theorem provers like Isabelle2

and Coq3. These formalisations have already found applications in program verification,

2See the Isabelle theories Kleene algebra and Kleene algebra with domain.
3See the Coq library on relational and Kleene algebras.

https://www.isa-afp.org/entries/Kleene_Algebra.html
https://www.isa-afp.org/entries/KAD.html
http://perso.ens-lyon.fr/damien.pous/ra/
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see [2, 45] and [118] for applications of Isabelle/HOL to program verification4, the latter
being in the case of hybrid systems, and [94] for applications of Coq. Furthermore, classical
rewriting theorems, originally expressed in relational algebra, have been generalised in
Kleene algebraic structures [28, 109].

However, the higher mechanisms of unwinding a system of calculation to obtain a truly
free presentation, described in the following paragraphs, have not yet been formalised.
In order to exploit the mathematical tools offered by this higher analysis of calculatory
systems, we require a structure with a simple algebraic signature that captures this
process. Such structures, introduced later in this thesis document, provide first steps
toward a formalisation of the mechanisms by which a system calculation is replaced by a
free higher system of calculation. Since free structures are those which can be handled by
a machine, this leads towards a wholly free, automatised paradigm of calculation.

1.4.5. Spheres and equivalences. When two reductions have the same source
and target, we say that they are parallel, and that together, they form a sphere. Since
spheres represent pairs of reduction sequences calculating the same thing, we would like
them to be equivalent. We again denote this equivalence by ≡, but now it applies to
reduction sequences, rather than elements. Given the (labelled) rules

a1 : 2 + 5 + 4→ 7 + 4, a2 : 7 + 4→ 11,

b1 : 2 + 5 + 4→ 2 + 9 b2 : 2 + 9→ 11,

we set a1a2 ≡ b1b2 to indicate that these reduction sequences perform the same calculation
in two different ways. This is graphically indicated as below:

2 + 5 + 4
a1

yy

b1

%%

≡7 + 4

a2
&&

2 + 9

b2xx

11

1.4.6. Coherence. If we consider all of the spheres in a system of calculation (X,→),
we can provide witnesses stating that all of the reduction sequences are equivalent.
However, this corresponds again to specifying all of the rules relating paths, a lengthy
process in general. As before, we would like to start with some generating higher witnesses,
and “glue” them together in order to deduce new equivalences.

Given some set Γ of higher (globular) witnesses, which can be thought of as tiles filling
the space between parallel reduction sequences, we may ask ourselves the following
question:

Given any two zig-zags, i.e. equivalences, can we fill the sphere created
between them with the tiles in Γ?

4see also the associated Isabelle theory.

https://www.isa-afp.org/entries/Algebraic_VCs.html
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When the answer to this question is yes, we say that (X,→) is coherent with respect
to the tiles in Γ. Coherence essentially means that we have a well-defined notion of
equivalence on the reduction sequences in the given calculatory system. Recall from the
above that this notion of equivalence is semantically interpreted in the following way:
two zig-zags which represent the same equality but composed of different calculatory
steps are equivalent. Coherence is important in categorical algebra, in which structure
at a given level may be encoded by higher cells. An example of this is the coherence of
strict monoidal categories, as demonstrated by MacLane [88].

1.4.7. A higher system of calculation. We may now consider a system of calcu-
lation underlying this higher notion equivalence. Indeed, by choosing a direction for the
elements of Γ, we obtain a system of calculation on the set of paths.

2 + 5 + 4
a1

yy

b1

%%

⇒7 + 4

a2
&&

2 + 9

b2xx

11

Adding labels to these higher calculatory steps, we may now ask the same question of this
new, higher-dimensional system of calculation, and so on. When we can “unfold” all of
these higher systems, we obtain a higher structure which is free in all dimensions.

1.4.8. Spatial interpretation of coherence. As described in Section 1.4.1, con-
sistency can be thought of as a notion of zero-dimensional contractibility along directed
paths. Coherence also has a spatial interpretation. When a confluence diagram is filled
with a tile, as depicted below, we can contract the paths along this two dimensional
space into one, and then shrink the resultant, single path, along the indicated direction
toward the target of the confluence. As opposed to the case of consistency, we do not
break any two-dimensional holes in this operation.

x
l1

}}

r1

!!

≡x1

l2   

x2

r2~~

x′

x

��

x′ x′

However, once all of the branchings are filled with two-dimensional tiles, three-fold
branchings will, in general, cause three-dimensional holes to appear. In the below
diagrams, we consider a three-fold branching (l1, c1, r1) which are pairwise resolved by
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confluences. The borders are identified, resulting in a 2-sphere:

x
l1

}}

r1

!!

c1
��

x1

l2   

≡ x3

c2
��

≡ x2

r2~~

x′

x
l1

}}

r1

!!

≡x1

l2   

x2

r2~~

x′

A coherent structure is therefore truly contractible: every “hole” of any dimension has
been filled, allowing the whole system to be retracted in a topologically sound manner.
Formally, such higher dimensional systems of calculation, in their spatial interpretation,
may be modelled by polygraphs [11], first called computads [106, 107].

1.4.9. Spatial interpretation of higher systems. Just as the equivalence tiles
may be thought of as two-dimensional tiles filling two-dimensional holes, we have notions
of n-dimensional tiles filling n-dimensional holes. When we take a directional perspective
on these higher rules, we may think of them as homotopies, i.e. paths between paths.
Topologically, a system which is coherent in all dimensions is equipped with contracting
homotopies, starting from the highest (possibly infinite) dimension, contracting it to the
one below, which is then contracted again, and so on until we reach a zero-dimensional
structure.

x
l1

}}

r1

!!

⇒x1

l2   

x2

r2~~

x′

x
r1

!!

x2

r2~~

x′

x2

r2~~

x′
x′

1.4.10. A coherence theorem. As in the case of consistency, we may use the
calculatory properties of the one dimensional structure to go from local coherence
properties to global coherence. This follows the same proof structure as the consistency
theorem for locally confluent and terminating abstract systems of calculation.

Let (X,→) be an abstract system of calculation, and set Γ of higher relations on the
reduction sequences thereof, directed or not. If any two zig-zags may be connected by
glueing together elements of Γ, then Γ is called a homotopy basis for (X,→). This in
particular means that (X,→) is coherent with respect to Γ.

When (X,→) is locally confluent, we specify a higher relation constructed using this
property. A family of generating confluences for (X,→) is an equivalence on reduction
sequences in the system consisting of a tile ≡r,l for each local branching (r, l). Given
labelled rewriting steps r and l constituting a branching, we choose a confluence (r′, l′)
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completing this branching and impose rr′ ≡ ll′, as illustrated below:

x
r

}} !!≡r,lx1

∗ !!

x2

∗~~
x′.

The coherence theorem states that a family of generating confluences constitutes a
homotopy basis, first proved by Squier in [104] to study coherence problems for monoids.
In this sense, we see again the schema of the consistency theorem, namely that from a
local property, the family of generating confluences, we obtain a global property, namely
coherence. The key difference is the higher witnesses provide a means of propagating the
constructive approach of rewriting to higher dimensions.

1.4.11. Strategies. If we choose a direction for the tiles ≡r,l associated to local
branchings, we may consider it as a system of calculation on the reduction sequences of
(X,→). This provides a new dimension of rewriting. The one-dimensional property of
local confluence and termination allows us to conclude that this system of calculation
is also coherent with respect to a yet higher system of relations. This process can be
continued, proving consistency and then coherence of each layer, and this from only the
information provided by the original one-dimensional system [65].

This propagation of convergence at each dimension of rewriting is encoded by the notion
of strategy [67]. While a convergent system of calculation provides a notion of normal
form, the notion of strategy provides a higher dimensional analog. Indeed, after “choosing”
base-points for zero-dimensional contractibility in the guise of normal forms, we may
also specify a base-point for reduction sequences, and then zig-zags. These then serve
as normal forms for the two-dimensional system of calculation, providing a notion of
one-dimensional contractibility, and so on ad infinitum.

1.4.12. Formalising coherence. As described in Section 1.4.4 the mathematics of
consistency in formal calculation have found an expression in simple algebraic structures,
first in relation algebras and then in the more general setting of Kleene algebras. This
leads to the following question:

Is there an algebraic setting in which all dimensions of rewriting, in particular
higher paving mechanisms, are captured and which generalises the one-
dimensional setting?

In Part I of this thesis, we tackle this question by introducing a notion of higher Kleene
algebra in which higher consistency theorems and the abstract coherence theorem are
captured.
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1.5. An algebraico-topological approach to
concurrency

1.5.1. True concurrency. In the modelisation of concurrent systems provided by
asynchronous graphs, the actions performed by each agent are seen to take place instan-
taneously: several actions cannot take place at the same time. In this sense, actions are
atomic, that is no time passes while the action is taking place. A richer description of
such a system allows for Alice and Bob to both be in the process of completing an action
simultaneously. This provides a finer description of concurrency, since it is exactly the
indeterminacy of the time it takes for each task to be completed which makes different
execution sequences possible.

Interpreting this topologically means allowing the model described above to allow for
paths to occupy the space between the sequences represented in the interleaving model.
For example, in the latter, the sequences “Alice does a1 followed by Bob does b1” and
“Bob does b1 followed by Alice does a1”, is represented by

· a1
// ·

· a1
//

b1

OO

·,
b1

OO

in which only execution sequences following the edges labelled a1 and b1 are allowed.

1.5.2. Spatial interpretation of true concurrency. In the true concurrency
point of view, see [43], we allow for Alice to do a1 while Bob does b1, allowing for richer
range of possibilities concerning execution sequences. These more aptly describe the
different situations which may arise by allowing for tasks to take time. A few such
situations are represented in the diagram below in the case of the toy example of Alice
and Bob performing actions a1 and b1 concurrently.

b1

a1 (1.5.3)

Note that here we represent the action a1 (resp. b1) as the interval preceding the label,
that is, the action is completed once we reach the vertical (resp. horizontal) gray line.
The blue path represents an execution in which Alice starts a1 before Bob starts b1 and
also finishes before Bob, whereas the red path expresses the opposite situation. The
black diagonal path represents an execution in which Alice and Bob both start and finish
at the same time.
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1.5.4. Directed spaces. There are of course still rules about direction in this space:
we must also stick to paths that always point toward the top-right. Generalising this
idea, we introduce the notion of directed space. These are spaces in which certain paths,
the directed paths, are designated as those providing directional information, see [43, 61].
A partially ordered space equipped with its set of monotone maps from the unit interval
with its usual order is an example of such a directed space. Directed topology was
originally introduced as a model, and a tool, for studying and classifying concurrent
systems in computer science [57, 95]. These can be combinatorially described not by
asynchronous graphs, but by the richer notion of cubical complexes, also called higher
dimensional automata, see [95].

Considering the example of the concurrent system with two mutexes described in Sec-
tion 1.3.12, we have the following true concurrency model as a pospace: we consider a
square in R2 equipped with the pointwise partial order, i.e. (x, y) ≤ (x′, y′) ⇐⇒ x ≤
x′ and y ≤ y′, with a “plus” shaped hole, corresponding to the blue area in the following
diagram:

pm

pµ

vµ

vm

A

pν pµ vµ vν
B

deadlock

(1.5.5)

Valid executions of this system correspond to paths which are non-decreasing for the
partial order, for example the black curve. This provides a richer description than the
interleaving model described in Sections 1.2.4 and 1.3.10, an example being that any
path which enters the red square is doomed to end in deadlock.

Formally, a directed space X consists of a topological space X and a set dX of directed
paths. The set dX is stable under concatenation, since two execution sequences should
be able, under certain conditions, to be put together to form a longer sequence, and
under reparametrisation, since the “speed” of an execution sequence is not important, but
rather the points through which the corresponding path in the space passes since this
determines the scheduling of actions. Lastly, we ask that it contains all of the stationary
paths, i.e. those which send the entire interval to a point. A formal definition is given in
Section 11.6.1.
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1.5.6. Higher spatial analysis. Not only does this allow for a richer variety of
execution sequences, but introducing a continuous topological model allows us to interpret
synchronisation of paths topologically. Indeed, in this optic, paths are equivalent when
there are no holes in the space separating them.

So far we have only seen systems involving two agents. However, in general, concurrent
systems can consist of many agents, or, as in the case of directed spaces, be abstracted
from the notion of agents altogether. For this reason, a study of holes in the space of
any dimension becomes important to detect the areas of mutual exclusion. Indeed, a
hole in the space of dimension n corresponds to an area of mutual exclusion involving n
agents.

However, a system involving n concurrently acting agents may have holes of dimension
k < n. In practice, this corresponds to generalised mutexes. Instead of only being allowed
to be held by one agent at a time, these resources are assigned an arity. More precisely, a
resource (r, kr) can be held by kr agents at a time. This can produce holes of dimension
kr.

Tracking the use of these objects becomes very difficult when there are many agents, and
many resources of various arities [43]. For this reason, classifying concurrent systems
with algebraic invariants can be useful as criteria for program design and verification.
Since we have a continuous topological model of such systems in the context of true
concurrency, we draw from tools in algebraic topology.

1.5.7. Algebraic invariants. Homotopy and homology are algebraic invariants of
topological spaces. They both measure the existence of holes in the space, by “tethered”
(directed higher dimensional) loops in the case of the former, and by “untethered” (directed
higher dimensional) loops in the case of the latter. Algebraically, they are distinguished by
being groups and modules, respectively. Computationally, homology is a more tractable
invariant, morally because of its “unfettered” nature, whereas homotopy provides a finer
study of “wrapping properties”, making it harder to calculate. For an excellent account
of the basics, we refer the reader to the standard textbook [70].

Since directed paths are, in general not loops, it could be that no such paths exist in the
space. Furthermore, while homology and homotopy are invariants of usual topological
spaces, and hence about the properties of the points of the space, the objects of interest
in the study of concurrent systems are the execution sequences, which correspond to the
directed paths. Our objects of study are thus no longer zero dimensional points of the
underlying space, but one dimensional (directed) paths.

1.5.8. Spaces of paths. For this reason, we study the topological properties of
spaces of directed paths. As in the case of systems of calculation, we limit our study to
spaces of paths which begin and end at the same two points, which will again be referred
to as parallel. Looking back to the asynchronous graph model of concurrency, we see that
such parallel paths correspond to some fixed set of actions having been completed.

Given two points x and y in the space, the set Px,y of parallel directed paths between
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them is naturally endowed with a topology inherited from the underlying space X. We
can thus apply the classical invariants described above to these spaces, and thereby obtain
information about the holes between paths, i.e. areas of mutual exclusion. However, there
are many such spaces of parallel directed paths in X ; we would like to also measure how
the topological features of these spaces vary as the beginning and end points move.

1.5.9. Directed algebraic invariants. Given a directed path v from y to some
third point z, we obtain a continuous map from Px,y into Px,z by post-concatenating
elements of Px,y with v. We then also obtain homomorphisms between the corresponding
homotopy groups or homology modules. This allows us to detect the appearance of
a hole between directed paths. Of course, we can also pre-concatenate with a path u,
starting at some point w and ending in x. Without extending using pairs of directed
paths (u, v), called extensions, there is in general no canonical way to obtain continuous
maps Px,y → Pw,z.

The ensemble of all such spaces and their inclusions by extensions provide a diagram of
topological spaces, to which we can apply homotopy and homology functors. This results
in a diagram of groups or modules, the homomorphisms of which measure the evolution
of topological features as we extend along directed paths. These diagrams are referred to
as natural homotopy and natural homology, see [31], in reference to their being encoded
as natural systems, a categorical gadget originally used in the cohomology theory of small
categories, see [5].

1.5.10. Time-sensitivity. After these invariants were introduced, notably after
natural homology was explored in [32], it was pointed out [87] that they did not capture
time-reversal. Given a directed space X = (X, dX), we may consider its time-reversal,
denoted by X o. This directed space has the same underlying topological space X, but
its set of directed paths dXo are those of X reversed, that is

dXo := {t 7→ f(1− t) | f ∈ dX}.

It is of course not desirable that a directed space should have an isomorphic invariant to
its time-reversal. However, in the original definition of the invariants, this was the case.
This leads naturally to the following question:

How can natural homology and natural homotopy be augmented to distinguish
a directed space and its time-reversal?

The answer to this question was found in the notion of composition pairing, which
relates the concatenation of paths to the homology or homotopy groups of path spaces.
Composition pairings are actually part of the structure of lax functors, as described by
Porter in [93]. This is explained in Chapter 12 in Part II.

1.5.11. Tractability. In classical algebraic topology, homotopy groups are typically
harder to calculate than homology modules, the latter in fact lending themselves to
calculation. For this reason, in the context of directed spaces, it is still true that natural
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homology is more tractable than natural homotopy, but it is nonetheless a large invariant,
making it difficult to compute.

Indeed, for each pair of points which are the beginning and end of some directed path,
we must calculate the homology module associated to the space. In addition to this, we
must calculate the induced maps given by every possible extension in order to obtain
the entire natural homology diagram. This quickly becomes too large to be tractable in
practice. However, it is exactly the homology maps induced by extensions which provide
information about the execution properties of the concurrent program modelled by the
considered space.

Persistent homology is another application of classical homology used in topological data
analysis, see [19] for an overview thereof. It is widely used in the spatial analysis of data
sets, typically given by high dimensional vectors. The idea is to take the discrete set
of points representing the considered data and “expand” each point, thereby creating a
sequence of larger and larger spaces. Calculating the homology of each of these, and in
particular, the maps induced by their inclusions, allows to capture the spatial features of
the data while eliminating noise. Importantly, uni-dimensional persistence modules are
computationally tractable.

The importance of the induced maps in each of these applications of classical homology
leads to the following question:

Is there a link between natural homology and persistent homology, and if so,
can the latter be used to calculate the former more efficiently?

In response, we establish that natural homology is in fact a generalised persistence
module, see Section 11.7 in Part II. The directed structure provides uni-dimensional
persistence modules by considering extensions along a fixed directed path. Furthermore,
we show that this information may be amalgamated and thereby reconstitute the natural
homology diagram, making a first step towards computability of this invariant.
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Chapter 2.
Relational and algebraic models
of calculation

Now we turn to mathematical models of calculation, first in simple algebraic structures.
The first, borrowing concepts from relational algebras, encapsulates the notion of abstract
rewriting systems. These are transition systems given by a binary relation over a set
whose elements are the objects on which calculations are performed. The second consists
of a generalisation of relation algebras, namely Kleene algebras, first introduced in the
study of regular languages and automata by Conway [23] under the name regular algebras.
These form a Türing complete model of calculation. When augmented with a modal
structure, calculatory properties and techniques are captured, see for example [28], or [27]
for a survey of modally enriched Kleene algebraic structures.

These algebraic structures capture the one-dimensional properties of calculation, but
do not provide the machinery for tackling higher dimensional analysis of the considered
system. However, they are formalised in most proof assistants, for example in the proof
assistant Isabelle1 and in the proof assistant Coq2, allowing verification of one dimensional
calculatory properties.

We describe the properties of calculation discussed in Chapter 1, first in the context
of abstract rewriting systems in Section 2.1, and then in modal Kleene algebra in
Section 2.2.

2.1. Abstract rewriting systems

The classical description of abstract systems of calculation is via relations [4]. While many
rewriting proofs have a geometric interpretation, description of abstract rewriting in the
relational setting has the advantage of expressing important properties by inclusions of
sets. This means on the one hand that proofs can be expressed formally, and provides
an algebraic interpretation on the other; binary relations over a fixed set form an
algebra. For a more complete account of ARS, see Section 5.1, or consult the standard

1See the Isabelle theories on Kleene algebras and Kleene algebras with domain.
2See the Coq library for relational and Kleene algebras.
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references [4, 111].

2.1.1. Transitions as relations. A system of calculation described by a relation is
called an abstract rewriting system (ARS). Formally, they consist of a set X of objects
and a binary relation R on X, i.e. a subset of the product X ×X.

The symbolic statement (x, y) ∈ R is interpreted as “y can be calculated from x as
the result of an elementary calculation”, and is referred to as a step. We say that x is
rewritten to y. Due to the directed nature of calculation, we often denote these relations
by arrows →R, or simply → when no confusion is possible.

As is described formally in Section 5.1, binary relations over a fixed set form an algebra
equipped with a notion of composition and of union. We can express all of the calculatory
properties discussed in Chapter 1 such as reduction sequences, (local) confluence, the
Church-Rosser property, and termination using these algebraic operations.

2.1.2. Closures, branchings and confluences. Relational composition is a non-
commutative operation akin to a multiplication. It is defined formally in the following
way: given binary relations R and S on X, their composition R ◦S is the relation defined
by

(x, z) ∈ R ◦ S ⇐⇒ ∃y ∈ X, (x, y) ∈ R and (y, z) ∈ S.

Given an ARS →, we may therefore define reduction sequences, henceforth referred
to also as rewriting sequences, as powers →n of the relation → under this notion of
composition. However, (x, y) ∈→n means that x and y are connected by a sequence of n
calculatory steps.

To obtain the relation corresponding to reduction sequences of arbitrary length, we
consider the union of all the powers of →:

∗→=
⋃
i∈N
→i,

where →0 is interpreted as the neutral element ∆ = {(x, x) | x ∈ X} for the composition
operation. This is the reflexive, transitive closure of →, i.e. the smallest reflexive,
transitive relation containing →. This relation represents the reduction sequences of the
ARS.

We may also consider the symmetric, reflexive, transitive closure of →, denoted by
∗↔. This is the smallest equivalence relation containing →, and hence corresponds to
the notion of equivalence underlying the system of calculation represented by the ARS
→.

The notion of composition also provides relations representing the branchings and
confluences of the ARS. Denoting by ← the converse relation of →, i.e. (y, x) ∈←
⇐⇒ (x, y) ∈→, local branchings correspond to the composition ← ◦ →. Indeed,
(x1, x2) ∈← ◦ → means by definition that there exists (at least) an element x ∈ X such
that x→ x1 and x→ x1.
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A (global) branching corresponds to a similar situation, but instead of reduction steps,
we should have reduction sequences. Branchings thus correspond to the composition
∗← ◦ ∗→.

Dually, confluences are represented by ∗→ ◦ ∗←, since given an element (x1, x2) of this
composite, there must exist some element x′ such that x1

∗→ x′ and x2
∗→ x′.

2.1.3. Termination. As outlined in the previous chapter, a system of calculation
terminates provided that there exist no infinite reduction sequences. In the relational
setting, this is expressed using notions from order theory; after all, a partial order is
simply a relation with specific properties.

Given a relation R on a set X, we say that an element x is R-maximal or simply maximal
if for all y ∈ X, (x, y) 6∈ R. Given a (possibly infinite) subset S ⊆ X of X, there is no
R-maximal element in S provided that the set

�RS := {y ∈ X | ∃x ∈ S, (x, y) ∈ R}

contains S. Indeed, if this is the case, we can iterate or loop R-steps on elements of
S.

For this reason, we say that an ARS → terminates if for all S ⊆ X, if S ⊆ �→S, then S
must be the empty set. This ensures that all subsets of X have a maximal element. This
is the dual property of being well-founded, and is known as Noethericity after Emmy
Noether. We therefore also refer to terminating ARS as Noetherian.

2.1.4. Consistency. As outlined in the previous chapter, consistency is a central
property to a well-constructed system of calculation. In the relational setting, these
consistency properties can be expressed as set-inclusions.

The property of local confluence corresponds to the following formal statement of set-
inclusion:

← ◦ →⊆ ∗→ ◦ ∗← .

This is local confluence of the entire system of calculation described by the ARS as
described in Section 5.1. In the relational setting, we cannot express confluence of a
specific local branching, since the relation ← ◦ → encodes all such configurations at
once, just as ∗→ ◦ ∗← encodes all confluence configurations. This is similar in the case of
(global) branchings and zig-zags.

Confluence (resp. the Church-Rosser property) of the ARS → are similarly expressed as
inclusions, given respectively by

∗← ◦ ∗→⊆ ∗→ ◦ ∗←, ∗↔⊆ ∗→ ◦ ∗← .

The relations representing (local) branchings, zig-zags and confluences can be thought of
as certain shapes or configurations. As can be seen from the definitions of consistency
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properties in ARS, we relate “conflict shapes”, i.e. branchings and zig-zags, to “resolution
shapes”, i.e. confluences. This relation is that of set-inclusion.

It is important to note that the existential and universal quantifications on conflict
shapes and resolution shapes, respectively, are encoded in this inclusion. Indeed, the
definition of local confluence means that for every local branching with targets x1

and x2, that is, (x1, x2) ∈← ◦ →, there exists a confluence with sources x1 and x2,
i.e. (x1, x2) ∈ ∗→ ◦ ∗←.

So while we cannot access the specific conflict and resolution shapes, this deficiency is
balanced by encapsulating all resolutions of conflicts at once. The consistency theorem
becomes:

5.1.11 Theorem (Consistency for ARS). Let → be a locally confluent, terminating
ARS. Then → is Church-Rosser.

2.1.5. Pathlessness. The relational approach to calculation has many advantages.
One of the main benefits we highlight here, is that the rewriting properties described
in the previous paragraphs are defined internally to an algebra with a relatively simple
signature, namely the full relation algebra on the considered set. However, we lose
information about the rewrite sequences themselves.

Indeed, relational composition forgets the “middle points” and thus identifies distinct
rewriting paths. For example, if (x, y), (x, y′) ∈ R and (y, z), (y′, z) ∈ S, we lose the
distinct reduction sequences xRySz and xRy′Sz. The only information R ◦ S provides
is that x is rewritten to z via some path. In this sense, relations provide information
about connectedness of objects, but forget the choices made while rewriting.

Consistency properties are therefore expressible in the relational setting, and the proofs
take place internally to the algebra. Coherence properties cannot be expressed, since
these depend on comparing reduction sequences.

2.2. Modal Kleene algebra

Relational rewriting provides a formal algebraic structure in which calculatory properties
may be expressed and results proved. However, they are not the simplest, or more most
abstract, algebraic setting in which rewriting techniques may be expressed. For this, we
turn to Kleene algebra. These have their origins in language and automata theorem,
originally called regular algebras [23], but have recently been extensively used for the
formalisation of rewriting and program verification techniques, see [27] for a survey.

A central difficulty in formal mathematics is in balancing readability of specifications
and proficient automated proof search. Capturing intuitions while remaining formally
rigorous constitutes a first stumbling block, which ideally should result in a setting
that provides correct, automated proofs which are readable and even illuminating. A
powerful formalisation of abstract rewriting theory may be found in the theory of Kleene
algebras. Algebraic abstraction allows for simple proofs in which deduction is replaced
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by calculation [109]. Proofs in this setting reconstruct intuitive proofs by diagrammatic
reasoning, making Kleene algebras a formal setting well suited to capture abstract
rewriting results. Modal Kleene algebras (MKAs) formalise abstract rewriting systems
(ARS), especially with respect to termination and normalisation properties [28, 109].
In particular, Newman’s lemma has been proved internally to modal Kleene algebra,
and the Church-Rosser theorem has been formalised in the proof assistant Isabelle3.In
this section we briefly describe these structures and their interpretation as a setting for
rewriting proofs.

2.2.1. The algebraic structure. A Kleene algebra is an algebra with the following
signature:

(K,+, 0, ·, 1, (−)∗),

where K is the underlying set; we will abuse notation by denoting the whole structure
by K. The operations + and · are called addition and multiplication respectively. Their
neutral elements are 0 and 1, called zero and one. Multiplication distributes over addition
on the left and right, and zero is an annihilator for multiplication. This describes the
structure of a semiring, see Section 6.1.

However, we impose that the addition operation is idempotent, i.e. x + x = x for all
x ∈ K. This allows an interpretation of the addition as a join-like operation, as well as
equipping K with an ordering defined by

x ≤ y ⇐⇒ x+ y = y.

Multiplication and addition are monotone with respect to this order.

The structure of idempotent semiring is augmented with a function (−)∗ : K → K called
the Kleene star. This map satisfies, for all x, y, z ∈ K,

i) (unfold axioms) 1 + x · x∗ ≤ x∗ and 1 + x∗ · x ≤ x∗,

ii) (induction axioms) z + x · y ≤ y ⇒ x∗ · z ≤ y and z + y · x ≤ y ⇒ z · x∗ ≤ y.

These axioms model iterative composition of an element of the algebra. In contrast to the
relational setting, this is not defined as a supremum over powers. Rather, it is modelled
as a least fix-point. Indeed, consider the following mappings:

a 7→ 1 + xa and a 7→ 1 + ax.

The first axioms state that x∗ is a least fixed point of this function. They are called the
unfold axioms since they express that an iteration of x may be unfolded into either doing
nothing, the 1, or doing an x step followed by an iteration of x steps, or vice versa.

The second axioms state that x∗ · z and z · x∗ are, respectively, least pre-fixed points of
the monotonic functions

a 7→ z + a · y and a 7→ z + y · a.
3This theorem may be found in the Kleene algebra Isabelle theory.

https://www.isa-afp.org/entries/Kleene_Algebra.html
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They are called the induction axioms because they express the principle of well-founded
induction based on an abstract notion of length, or size of an iteration. For example,
the second induction axiom can be interpreted as follows: the goal of the induction is to
prove that, initialising at z, any number of x-steps is under the element y, i.e. z · x∗ ≤ y.
To prove this, it suffices to show that

− z holds, i.e. z ≤ y.

− a single x-step followed by y holds, i.e. x · y ≤ y.

From these two statements, we obtain by idempotence of addition that z + x · y ≤ y,
allowing us to deduce the claim we set out to prove.

The Kleene star is algebraically characterised, allowing us to perform simple, induction-
free proofs, that are well suited for automation. Since relational algebra satisfy continuity
of multiplication, i.e. composition, over addition, i.e. set-union, Kleene algebraic proofs
are more general.

2.2.2. Modalities. The structure of Kleene algebra may be further augmented by
notions of domain and codomain. These are maps

d : K → K and r : K → K,

satisfying a number of axioms. The domain operation, for example, satisfies the following
five axioms:

x ≤ d(x)x, d(xy) = d(xd(y)), d(x) ≤ 1,

d(0) = 0, d(x+ y) = d(x) + d(y).

Those for codomain are similar: the order of multiplication is reversed. These first
two axioms encode, respectively, that restricting an element x on the left to its domain
contains x, and that domain is local in the sense that the domain of a product xy depends
only on the domain of x when restricted on the right to the domain of y, see below.
The first axiom may strengthened to an equality by considering the third and using
monotonicity of multiplication. The other axioms express that elements in the image of
d are sub-identities, i.e. are below 1, and that d is a morphism of sup-semilattices.

The domain axioms impose that the set of fix-points of d coincides with its image:

Kd := {x ∈ K | d(x) = x} = d(K).

The set Kd is called the domain algebra of K. This is a sub-algebra of K in which the
multiplication is commutative and idempotent, endowing it with the structure of a lattice.
Elements of this subalgebra are called domain elements.

Elements in K act on the domain algebra via modal operators. Indeed, the domain and
codomain axioms imply that

|x〉 : Kd −→ Kd 〈x| :Kd −→ Kd

p 7−→ d(x · p) p 7−→ r(p · x),
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called forward and backward diamond operators associated to x, respectively, are hemi-
morphisms of the lattice Kd, i.e. commute with binary meets and joins, send 0 to
0 and commute with suprema. They satisfy module-like laws, e.g.|x〉|y〉 = |xy〉, and
coincide with the diamond operators associated to relations in the standard Kripke
semantics[51].

Diamond operators represent reachability relations, i.e. tell us which sets are “connected”
by which reductions. For example, the inequality 〈x|(p) ≤ q is interpreted as the
statement “ starting in p, x-steps take us into q ”.

We also consider a converse operation in the form of an involution (−) : K → K satisfying
a number of axioms, see Section 6.1.17.

2.2.3. An algebra of transition systems. We now turn to the intuitions under-
lying the use of this algebraic structures as a means of describing systems of calculation.
So far, we have discussed abstract systems of calculation and rewriting systems. Both
consist in an underlying set X and a number of reductions relating elements thereof.
Here, we have an abstract representation of the power-set of X as well as many transition
or reduction relations on elements of X.

Indeed, the domain algebra of a Kleene algebra K may be thought of as a lattice of
subsets of a set X due to its lattice structure. However, elements of Kd may be thought
of not only as subsets of X but also stationary reductions on X, i.e. reductions which
reduce elements to themselves. The entire set of objects is represented by the element 1,
the top of the lattice of domain elements.

Other elements of K are interpreted as collections of (non-stationary) transitions on
elements of X. In this sense, an element x ∈ K can be thought of as a relation, but may
have other interpretations, such as a set of paths. A Kleene algebra is thus an algebra
of transition systems. Multiplication represents concatenation, i.e. x · y is the element
which follows x-steps by y-steps. Multiplying an element x ∈ K on the left (resp. right)
by a domain element p ∈ Kd is interpreted as restriction of x to elements in p in its
domain (resp. codomain). More precisely, p · x (resp. x · p) represents the collection of
x-steps which have their source(resp. target) in the subset p.

Since each of these reductions or steps are linked to elements by source and target, not
all x-steps and y-steps are included in the element x · y, only those for which the targets
and sources match up, respectively. This is encoded in the (co-)domain axioms via
d(y) · y = y and x · r(x) = x. Indeed, we thereby have

x · y = (x · r(x)) · (d(y) · y) = x · (r(x) · d(y)) · y,

meaning that the multiplication x ·y automatically restricts x (resp. y) to the intersection
r(x) · d(y) in its codomain (resp. domain). This can be further evidenced by the fact
that multiplication is commutative in Kd, meaning that we may also write

x · y = (x · r(y)) · (d(x) · y).
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In particular, if x · y = 0, it means that none of the reductions of x may be concatenated
by those of y.

The modal operators, as indicated above, tell us how collections of transitions connect
different sets of objects. When the transitions are relations, the backward diamond
corresponds to the diamond �R defined in the previous chapter. However, when con-
sidering other models of Kleene algebra, for example those in which parallel reductions
may take place, these operators “flatten” the collection of transitions x into a relational
representation thereof.

The converse operation sends an element x ∈ K, i.e. a collection of reductions, to the
collection of reductions x in the opposite direction. More precisely, for every reduction
l→ r in x, the reduction r → l is in x.

These intuitions become concrete when we consider models of Kleene algebra in Sec-
tions 6.1.21 and 6.1.22 as relational or path algebras. The abstraction provided by
Kleene algebra allow us to consider these, as well as others, at once. Abstract systems
of calculation and their properties may thereby be encoded free from any concrete
context.

2.2.4. Abstract rewriting in MKA. Calculatory properties such as confluence
and termination can be expressed in the setting of modal Kleene algebra. These are
expressed similarly to those in the relational setting, that is using inequalities in the
algebra. However, since we have an algebra of transition systems, we can be more general.
We first consider cases of semi-commutation before tackling confluence properties. Given
x, y ∈ K, we say that the ordered pair (x, y)

i) semi-commutes locally if xy ≤ y∗x∗,

ii) semi-commutes if x∗y∗ ≤ y∗x∗, and

iii) has the Church-Rosser property if (x+ y)∗ ≤ y∗x∗.

Replacing x by y, we have the properties of local confluence, confluence and the Church-
Rosser property for the element y.

This gives further insight into consistency properties. Indeed, the semi-commutations
above may be considered as re-ordering properties. The second property, for example,
expresses that for any iteration of x-steps followed by an iteration of y-steps, we can
find a reduction sequence consisting in y-steps followed by x-steps. The Church-Rosser
property expresses that any reduction sequence consisting in x- and y-steps in any order
can be re-ordered into a reduction sequence in which y-steps take place before x-steps.
Confluence properties are thus special cases of re-ordering properties. These properties
are diagrammatically represented as follows:

·@@x y
��

·

y∗ ��

·@@
x∗·

·@@x∗ y∗

��

·

y∗ ��

·@@
x∗·
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We may also express the same ideas under the modal operators. While these two notions
of confluence properties coincide in the relational setting, they do not coincide in other
models of Kleene algebra, such as the path model, which are of interest. Given x, y ∈ K,
we say that the ordered pair (x, y)

i) modally semi-commutes locally if 〈x||y〉 ≤ |y∗〉〈x∗|,

ii) modally semi-commutes if 〈x∗||y∗〉 ≤ |y∗〉〈x∗|, and

iii) has the modal Church-Rosser property if |(x+ y)∗〉 ≤ |y∗〉〈x∗|.

Termination is expressed in modal Kleene algebra using the forward diamond modalities.
An element x ∈ K terminates, or is Noetherian, provided that for all p ∈ Kd the
implication

p ≤ |x〉p⇒ p = 0,

holds. This is precisely the condition given for termination of relations above in Sec-
tion 2.1.3 and is interpreted as such in the relational model of Kleene algebra, see
Section 6.1.21.

2.2.5. Consistency. We obtain generalised versions of Newman’s lemma [28] and
the Church-Rosser theorem [109] in the setting of (modal) Kleene algebra. This, as in
the case of ARS, provides us with a generalised consistency theorem:

6.2.11 Theorem (Consistency for MKA). Let K be a modal Kleene algebra and
x, y ∈ K such that (x+ y) ∈ N (K) and (x, y) locally modally semi-commute. Then (x, y)
has the Church-Rosser property.
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Chapter 3.
Categorical model of calculation

In the previous chapter, we considered ARS and MKA, the first a relational point of view
of a single system of calculation, the second an abstract algebra of systems of calculation.
Here we present another modelisation of an abstract system of calculation in the form of
(higher) directed graphs. In contrast to ARS, these have labelled transitions, so we can
track reduction sequences. Furthermore, parallel reductions are allowed, which means
that coherence properties as well as consistency properties may be treated.

However, as we will develop later, this modelisation does not exclusively have benefits.
The fact that we consider labelled transitions helps us keep track of different reduction
sequences, but in turn means that we must consider each specific transition individually.
A consequence of this, for example, is that we lose the point-free characterisation of
consistency properties and of termination that we had in the case of ARS.

We first discuss the notion of 1-polygraph, defining calculatory properties in this context
before turning to questions of coherence for these structures. We then discuss the higher
dimensional case, in which higher dimensional systems of calculation are captured by the
notion of n-polygraph, terminology due to Burroni [11, 12] and originally introduced as
computads by Street, see [107, 108]. These structures have been used to capture higher
dimensional rewriting systems presenting a diverse range of algebraic structures, and
have been used, for example, to solve coherence problems in algebra [25, 46, 69], and for
monoidal categories [66]. We discuss (abstract) coherence for such higher systems and
show that, in this context, they are captured in terms of those given in the one-dimensional
case.

3.1. Graphical transitions

The structure we employ is that of directed psuedo-graph, which we refer to as 1-polygraph.
Formally, a 1-polygraph P consists of a pair (P0, P1) of sets and two functions

s0, t0 : P1 → P0,

called 0-source and 0-target, respectively, or simply source and target if no confusion
is possible. Elements of P0 are called 0-cells or objects while elements of P1 are called
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generating 1-cells, or reduction or rewrite steps. Note that the source and target maps
may not be injective, i.e. parallel transitions are permitted. We denote a generating
1-cell by f : x→ y or

x
f
// y

A 1-polygraph generates the free 1-category P ∗, also denoted by P0[P1], whose objects,
or 0-cells, are those of P and whose morphisms, or 1-cells, are formal compositions of
generating 1-cells. This is related to the topological interpretation of calculation discussed
in Chapter 1. Indeed, the morphisms of the free category P ∗ correspond to directed
paths in the graph (P0, P1), and are called reduction or rewriting sequences.

We also consider the free groupoid P>, also denoted by P0(P1), generated by P . This is
the groupoid whose objects are those of P0 and whose morphisms are formal compositions
of elements of P1 and their formal inverses. These morphisms then correspond to the
undirected paths in (P0, P1), and are called zig-zag sequences.

3.1.1. Rewriting properties. The calculatory properties of a 1-polygraph can be
explicitly defined internally to their structure, but we prefer to connect them to the
relational ARS point of view. This simplifies terminology and provides clearer notions
of rewriting properties, but in particular highlights that the calculatory properties of a
1-polygraph are relational; the only thing we add when considering 1-polygraphs is a well-
defined spatial interpretation which allows us to keep track of reduction sequences.

To a 1-polygraph P , we associate an ARS on P0, denoted by →P , and defined by

x→P y ⇐⇒ ∃u : x→ y ∈ P1,

for all x, y ∈ P0. The relation →P is the “flattening” of the polygraph, in the sense that
we now only have information about connectivity of 0-cells, but have lost information
about distinct rewriting paths. Another way of saying this is that we have collapsed all
parallel morphisms into a single abstract transition.

The rewriting properties (confluence, Church-Rosser, termination) of P are simply those
of →P . In contrast to ARS, we may now talk about confluence of a single branching or
zig-zag:

i) We say that a (local) branching (f, g) is confluent if there exists a confluence (f ′, g′)
as depicted below:

xf
||

g
""

x1

f ′
  

x2

g′
~~

x′

Such a diamond is called a confluence diagram.
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ii) A zig-zag h ∈ P>1 is confluent if there exists a confluence (h′, k′) as depicted below:

u oo
h

//

h′ ##

v

k′{{

u′

We say that P is confluent (resp. locally confluent) if every branching (resp. local
branching) of P is confluent. We say that P is Church-Rosser if every zig-zag sequence
of P is confluent.

This shows an important difference between the polygraphic and ARS approaches to
rewriting theory. In polygraphs, rewriting properties are “point-wise” in the sense that we
specify confluence of every branching or zig-zag when expressing consistency properties.
Moreover, we are able to specify which confluence we choose to complete the branching
into a confluence diagram, instead of just knowing that some confluence exists. This is a
benefit, in that we have more control over reduction sequences, but makes formalisation
more tricky since the objects in question must be tracked.

In the ARS setting, consistency properties are expressed via inclusions of sets. These
encode the universal and existential quantifications over individual branchings and
confluences, respectively, that we observe in the polygraphic setting.

3.1.2. Coherence. This point-wise nature of the polygraphic approach to abstract
systems of calculation becomes primordial when describing coherence properties. Indeed,
since we can manipulate the transformations themselves as if they were objects, we may
treat them as such, i.e. consider them as being subject to “higher” reductions.

These are encoded in the notion of cellular extension. Given a 1-polygraph P , a cellular
extension is a set Γ equipped with maps

P ∗1 Γ,
t1
oo
s1
oo

where we recall that P>1 is the set of reduction sequences in P . This means, in particular,
that the pair (P ∗1 ,Γ) is a 1-polygraph, i.e. that we have a higher system of calculation
whose objects are the reduction sequences, directed paths, of P , and whose reduction
steps are known as 2-cells, denoted by α : f ⇒ g,

f
α %9 g, or ·

f

  

g

>>⇓ α ·

In keeping with the discussion in Chapter 1, we want the higher cells to encode equivalence
between reduction paths which calculate the same equivalence between 0-cells. For this
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reason, we impose that the 1-source and 1-target maps satisfy globular relations as
indicated by the right-hand diagram above, and explicitly stated in Section 5.3.2.

A cellular extension Γ consisting of a generating 2-cell αf,g for every local branching
(f, g) completed to a confluence diagram by some confluence (f ′, g′) is called a family of
generating confluences. This situation is diagrammatically depicted as follows:

xf
||

g
""

x1

f ′
  

x2

g′
~~

x′

α %9

We say that Γ is a homotopy basis if for all parallel zig-zag sequences f and g in P ,
i.e. those with common source and target, there exists a 2-cell α formed from the elements
of Γ connecting f and g. Symbolically and diagrammatically stated:

∀f, g ∈ P>1 ,

{
s0(f) = s0(g)

t0(f) = t0(g)
∃α ∈ P>(Γ)2, α : f ⇒ g. · yy

f

%%
ee

g

99⇓ α ·

The coherence theorem for abstract systems of calculation, stated in terms of polygraphs,
affirms that every family of generating confluences constitutes a homotopy basis:

?? Theorem (Consistency for 1-polygraphs). Let P be a locally confluent, termi-
nating 1-polygraph. Then P has the Church-Rosser property.

It is essentially proved in two steps, repeating the pattern we saw in the case of consistency:
first a coherent version of Newman’s lemma, then a coherent version of the Church-Rosser
theorem.

3.2. Higher dimensional rewriting systems

As described in Chapter 1, given an abstract system of calculation, coherence proofs by
rewriting use the calculatory properties of the system to present the reduction sequences
as a free system subject to certain higher relations. This process can be iterated on these
new higher relations, producing yet higher relations, etc. Due to this propagation of
coherence, higher dimensional rewriting systems are worth studying.

These are represented by n-polygraphs, also called higher polygraphs, introduced by Street
as computads [106, 107] and later dubbed polygraphs by Burroni in [11], see also [13].
These have a free structure up to the last dimension, which is considered to be the
“rewriting dimension”, since it is the last set of higher relations added to the system.
These higher polygraphs may therefore also serve as presentations of higher dimensional
structures which are free up to the last dimension, see Section 5.3.
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In keeping with the goal of this thesis, namely the description of coherence for abstract
higher systems of calculation, we describe here that underlying such a higher structure
is a 1-polygraph, and thereby an ARS, encoding all of the calculatory properties of the
final dimension, i.e. the dimension of rewriting.

3.2.1. Higher polygraphs. In the previous section, we defined 1-polygraphs as
directed pseudo-graphs. We also saw the definition of cellular extension. Combining
these two notions, we can view a 1-polygraph as a cellular extension P1 of the set P0.
This motivates the following inductive definition of higher polygraphs.

For n ≥ 0, an n-polygraph P consists of a set P0 and for every 0 ≤ k < n a cellular
extension Pk+1 of the free k-category

P0[P1] . . . [Pk].

At each level, we have a system of calculation Pk on the free structure P0[P1] . . . [Pk−1]
on the level just below. Each of these could be considered as the level of rewriting, but
implicitly, an n-polygraph is an abstract rewriting system (of dimension n) on a free
system (of dimension (n − 1). It is thus the dimension of the final cellular extension
which we consider to be the dimension of rewriting, or calculation.

3.2.2. Dimension of rewriting. However, before we associate a 1-polygraph or
ARS to this dimension of rewriting, we must place the reduction rules of Pn in context.
Indeed, due to the underlying structure being of dimension n− 1, which we can consider
to be strictly greater than zero, we must incorporate the compositions of the underlying
cells of dimensions k < n in order to capture the full scope of the higher dimensional
rewriting system. When working with higher categories, this contextualisation of higher
cells is built into the free categorical constructions.

For example, with two dimensional cells, we should not only consider the generating 2-cell
on the left below, reducing a 1-cell u to a 1-cell v, but also the composite 2-cell pictured
on the right reducing wuw′ to wvw′, for all 1-cells w,w′ for which these compositions
make sense.

x

u

��

v

AA
yα

��
x′

w
// x

u

��

v

AA
y

w′
// y′f

��

We therefore consider n-cells of the form

fn−1 ?n−2 . . . ?2 (f2 ?1 (f1 ?0 α ?0 g1) ?1 g2) ?2 . . . ?n−2 gn−1,

where fi, gi are i-cells of P0[P1] . . . [Pn−1] for 0 ≤ i ≤ n, and α ∈ Pn. The set of such
n-cells is denoted by P cn. As mentioned above, this is compatible with free higher
categorical constructions in the sense that any n-cell of the free n-category generated by
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P can be written as an (n− 1)-composite of cells of the above form using the laws of
higher categories.

These rules in context provide us with the rewriting information at dimension n encoded
by the n-polygraph P . We formalise this by defining the underlying rewriting polygraph,
denoted P c, whose 0-cells are the (n−1)-cells of the free (n−1)-category P0[P1] . . . [Pn−1],
and whose 1-cells are elements of P cn, i.e. the generating n-cells in context.

The rewriting properties of the n-polygraph are defined to be those of P c, which in turn
are defined to be those of its underlying ARS. In this way we again see that even in
higher dimensional rewriting, we recover a relational system of calculation which encodes
the properties at dimension n.

3.2.3. Iterated coherence. Just as consistency properties of higher dimensional
rewriting systems can be seen via the underlying 1-polygraph described above, the
problem of (abstract) coherence for n-polygraphs is also relegated to the problem of
coherence for 1-polygraphs. Indeed, a cellular extension of the rewriting polygraph
underlying an n-polygraph P can be transported “up” to dimension (n+ 1) and be seen
as a cellular extension of the free n-category generated by P , and vice versa.

Importantly, however, good rewriting properties at dimension one are propagated upwards
to the higher systems of calculation we obtain when considering coherence properties.
More explicitly, starting with a locally confluent and terminating 1-polygraph P , we have
seen above that we can construct a set P2, a family of generating confluences, which
renders P one-dimensionally contractible. It can then be shown that the 1-polygraph
(P ∗1 , P

c
2 ) is also locally confluent and terminating, allowing us to build a coherent three-

dimensional extension of the 2-polygraph (P0, P1, P2). This process continues to arbitrary
dimension.

This propagation of coherence via iterating the coherence theorem for one-dimensional
systems of calculation allows the calculation of useful algebraic objects, cofibrant replace-
ments, as well as providing calculatory invariants of algebraic structures [65, 67].



Chapter 4.
Topological models of concurrency

In Chapter 1, we recalled the model of concurrent systems give by asynchronous graphs.
While these provide a rich description of concurrency, in this chapter we will focus on
topological models for concurrent systems. For more information about asynchronous
graphs, we refer the reader to Section 3.3.2 of [43].

On the one hand, this is because classical models of concurrency are out of the scope of
this thesis. Indeed, my work in this area is essentially limited to the study of algebraico-
topological invariants for concurrent systems. On the other hand, asynchronous graphs
become unwieldy when considering higher dimensional concurrent systems, especially
when resources of different arities come into play [60]. Indeed, the synchronization
primitives in asynchronous graphs are essentially two-dimensional.

The natural structure which responds to both of these shortcomings is that of pre-cubical
sets [113]. These are combinatorial presentations of spaces built from glueing cubes of
various dimensions along their borders, allowing for a higher analysis, and come equipped
with a natural realisation as partially ordered spaces, thus providing a topological
interpretation. We refer the interested reader to [117] and [58] for a description of
classical models for concurrency, their relationships, and relationships with pre-cubical
set-based models for concurrency defined below.

In Section 4.1.1, we recall the notion of cubical complexes and describe their geometric
realisation. We then quickly move on to the more general setting of directed and partially
ordered spaces in Section 4.2.

4.1. Cubical complexes

4.1.1. Pre-cubical sets. A pre-cubical set K is a family (Kn)n∈N of sets along with
maps ∂αi : Kn → Kn−1 with 1 ≤ i ≤ n and α ∈ {0, 1}. These are called face maps, and
must satisfy the following cubical relations:

∂αi ◦ ∂
β
j = ∂βj−1 ◦ ∂

α
i .

This is a purely combinatorial description of a space built from cubes of various dimensions.
The elements of Kn are thought of as n-dimensional cubes, and the face maps encode
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how lower-dimensional cubes constitute faces of higher ones. The cubical relations encode
the “cubical shape” of these abstract elements. In order to have a spatial interpretation
of these structures, we will define a geometric realisation using a standard n-cube:

Let �n = {(t1, ..., tn) ∈ Rn | ∀1 ≤ i ≤ n, 0 ≤ ti ≤ 1} the standard n-cube in Rn.
We define for α ∈ {0, 1}, n ∈ N, 1 ≤ i ≤ n+ 1, ραi : �n → �n+1 by:

ραi (t1, ..., tn) = (t1, ..., ti−1, α, ti, ..., tn)

4.1.2. Geometric realisation. Let K be a pre-cubical set. Equipping each set Kn

with the discrete topology, we form the topological space R(K) =
⊔
n∈N

Kn×�n, where we

take the usual induced topology on standard n-cubes, the product topology on Kn ×�n
and the disjoint topology over the disjoint union. The elements of R(K) are then pairs
(e,~a), e being a standard n-dimensional cube in K and ~a ∈ [0, 1]n.

The geometric realisation of K, denoted by Geom(K), is the quotient space obtained
from R(K) under the least equivalence relation ≡ such that:

∀α ∈ {0, 1}, n ∈ N, 1 ≤ i ≤ n, x ∈ Kn, t ∈ �n−1, (∂αi (x), t) ≡ (x, ραi (t)).

The advantage of using pre-cubical sets is that they are more expressive when it comes
to modelling resources with arities larger than one, i.e. resources which are not mu-
texes.

4.2. Directed and partially ordered spaces

Directed topology has been originally introduced as a model, and a tool, for studying
and classifying concurrent systems, in computer science [57, 95]. In this approach, the
possible states of several processes running concurrently are modeled as points of a
topological space of configurations, in which executions are described by paths. Thus
restricted areas appear when these processes have to synchronise, to perform a joint
task, or to use a shared object that cannot be shared by more than a certain number of
processes.

It is natural to study the homotopical and homological properties of this configuration
space in order to deduce some interesting properties of the parallel programs involved,
for verification purposes, or for classifying synchronisation primitives. A usual model
for concurrent processes is actually the one of higher-dimensional automata, that are
based on (pre-)cubical sets, and are the most expressive known models in concurrency
theory [113].

Contrarily to ordinary algebraic topology, the invariants of interest are invariants under
some form of continuous deformation, but which has to respect the flow of time. In
short, the only valid homotopies are the ones which never invert the flow of time. For
mathematical developments and some applications we refer to the two books [43, 61].
Other topological models for concurrency exist, in particular streams [80] and local



4.2. DIRECTED AND PARTIALLY ORDERED SPACES 61

po-spaces [44], which generalise pospaces to looping situations. In this thesis we will
focus exclusively on the interpretation offered by directed spaces.

4.2.1. Directed spaces. Recall from [61] that a dispace, or a dispace for short, is a
pair X = (X, dX), where X is a topological space and dX is a set of paths in X, i.e.,
continuous maps from [0, 1] to X, called directed paths, of dipaths for short, such that
every constant path is directed, and dX is closed under monotonic reparametrization
and concatenation.

4.2.2. Partially ordered spaces. Partially-ordered spaces, or pospaces for short,
form particular dispaces : these are topological spaces X equipped with a partial order
≤ on X which is closed under the product topology. The directed structure is thus given
by continuous maps p : [0, 1]→ X such that p(s) ≤ p(t), for all s ≤ t in [0, 1].

Another useful class of dispaces is given by the directed geometric realization of finite
pre-cubical sets defined in the previous section. These are made of gluings of cubical cells,
on which the dispace structure is locally that of a particular partially-ordered space :
each n-dimensional cell is identified with [0, 1]n ordered component-wise. This last class
is in particular very useful in applications to concurrency and distributed systems theory,
see e.g. [43].

4.2.3. Classification of directed spaces. Classifying directed spaces according
as semantic models of concurrent processes requires a fine analysis. As an example, we
have depicted two dispaces in Figure 4.1, which are built as the gluing of squares, the
white ones, each of which is equipped with the product order on R2. They are the directed

•

•

αX

βX

X = (X, dX)

S

U
U S

U

S

•

•

αY

βY

Y = (Y, dY )

S

U

S

U

Figure 4.1: Examples of pospaces coming from non-equivalent concurrent programs.

geometric realisation of certain pre-cubical sets, i.e. are higher-dimensional automata
in the sense of [95]. They are not dihomeomorphic spaces since they are already non
homotopy equivalent: the fundamental group of the leftmost one, which we call X, is the
free abelian group on three generators, whereas the fundamental group of the rightmost
one, Y , is the free abelian group on four generators.
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4.2.4. Spaces of paths. We would like not only to distinguish the underlying spaces,
but the dipaths in each. Indeed, it is these which link these spaces to concurrency,
classifying the various execution properties of the considered concurrent system. For this,
we look at spaces of directed paths between points in the underlying space.

Consider now the topological space of directed paths, with the compact-open topology,
from the lowest point of X (resp. Y ), denoted by αX (resp. αY ), to the highest point
of X (resp. Y ), denoted by βX (resp. αY ). The topological space

−→
Di(X )(αX , βX) of

directed paths from αX to βX , is homotopy equivalent to a six point space, corresponding
to the six dihomotopy classes of dipaths pictured in Figure 4.1.

However, these two dispaces should not be considered as equivalent in the sense that
they correspond to distinct concurrent programs. Therefore comparing spaces of dipaths
exclusively between two particular points in each space is not sufficient for distinguishing
these dispaces.

4.2.5. Natural homotopy and natural homology. Directed topological invari-
ants, most notably the computationally tractable ones such as homology, have been long
in the making, starting again with [57]. In this thesis, we focus on natural homotopy and
natural homotopy, see [31]. The intuition behind these invariants is to encode the way in
which the homotopy or homology types of the spaces of directed paths vary when we
move the end points.

Indeed, with the possibility of considering all the directed path spaces, we can distinguish
the two former pospaces. Indeed, if we consider the space of directed paths between α
and β, as in Figure 4.2, it has the homotopy type of a discrete space with four points
but we can show that, in Y , there is no pair of points between which we have a directed
path space with the same homotopy type.

S

U
U S

U

S

•

•

αX

β′X

Figure 4.2: Changing the base points to exhibit a particular space of directed paths.

The algebraic structures which log all of the homotopy or homology types of the directed
path spaces between each pair of points is that of a natural system, see Section 11.2.1,
hence the appellation of these invariants. These first appeared in as generalised coefficients
in the homology theories of categories, see also . Importantly, natural homotopy and
homology not only keep track of the homotopy or homology types of each space of
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directed paths, respectively, but also the group morphisms obtained from inclusions of
these spaces given by extensions, as described in Section 1.5.9.



64 CHAPTER 4. TOPOLOGICAL MODELS OF CONCURRENCY



Part I.
Formalising coherence
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Chapter 5.
Dimensions of rewriting

In this preliminary section, we recall rewriting paradigms formally. First, in Section 5.1,
we recall the definition of, constructions with, and calculatory properties as expressed
in a relational setting, which we call abstract rewriting. A more detailed account of
abstract rewriting can be found in the standard references [4, 111]. We then do the same
in the context of 1-polygraphs in Section 5.2, offering a spatial interpretation of abstract
rewriting.

Next, we distinguish abstract rewriting from string rewriting and recall the description
of the latter via 2-polygraphs in Section 5.3, before turning to the higher dimensional
case in Section 5.4. In these, we also recall standard definitions and properties of higher
categories. The combinatorial structures we employ to describe higher dimensional
rewriting systems, known as polygraphs [11] or computads [107], are more fully treated
in [13] and [68] from the point of view of calculation, and their relation to the folk model
structure on higher categories may be found in [91].

This chapter contains no new results and serves to provide context for later chapters.

5.1. Abstract rewriting

Before addressing the polygraphic approach to systems of calculation, we recall their
description and properties as binary relations over a set. This is on the one hand to
introduce terminology, and on the other it will provide intuition for the description of
ARS via Kleene algebra.

5.1.1. Abstract rewriting systems. We consider a set X, whose elements we
refer to as objects. An abstract rewriting system (ARS) R is a (binary) relation on X,
i.e. a subset R ⊆ X ×X. We interpret

(x, y) ∈ R

as the statement: x is rewritten to y. In the spirit of rewriting theory, we will henceforth
denote a relation R by →R or simply → when no confusion is possible. In this notation,
(x, y) ∈ R will be replaced by x→ y.
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5.1.2. The algebra of relations. The set of (binary) relations over X is denoted
by Rel(X). The composition of relations is denoted by ◦ and is defined, for →R,→S∈
Rel(X), by

→R ◦ →S := {(x, z) | ∃y ∈ X, x→R y and y →S z }.

The neutral element of this operation is the diagonal of X, i.e. the set

{(x, x) | x ∈ X} ∈ Rel(X),

which will henceforth be denoted by ∆X , or simply ∆ when no confusion is possible.
The converse of →∈ Rel(X) is denoted by ←. A relation T ⊆ ∆ is called a subidentity.
Subsets of X are in bijective correspondence with subidentities by the map which sends
a subset P ⊆ X to the subidentity P∆ := {(x, x) | x ∈ P}.

We additionally equip Rel(X) with the operation of set-union, denoted by ∪, whose neu-
tral element is the empty set, denoted as usual by ∅. The structure (Rel(X), ∪, ∅ ◦, ∆),
called the total relation algebra over X, forms a semiring, see Section 6.1. The subidenti-
ties constitute a subalgebra of Rel(X) and is denoted by SubId(X). In this subalgebra,
composition of relations corresponds to intersection, making SubId(X) isomorphic to
the power-set lattice of X. Explicitly, for subsets P, P ′ of X,

(x, x) ∈ P∆ ◦ P ′∆ ⇐⇒ x ∈ P ∩ P ′.

Relations on X act on the algebra of subidentities via modal operators. For a relation R,
we define the forward diamond operator of R by

|R〉 : SubId(X) −→ SubId(X)

P∆ 7−→ {(x, x) | ∃y ∈ X, (x, y) ∈ R ∧ y ∈ P}.

This operator sends a subset P of X to the points accessible from P by R-steps. It is a
modal operator in the sense of . Generalisations thereof will be important when defining
rewriting properties in the setting of Kleene algebra.

5.1.3. Iteration and equivalence. Let → be an ARS over X. In order to express
rewriting properties, we consider the following relations generated by →:

− The ith iteration of →, inductively defined by

→0:= ∆ →i := →i−1 ◦ →, ∀i > 0,

− the transitive closure of →, defined by

+→ :=
⋃
i>0

→i,

− the reflexive closure of →, defined by

↔ :=← ∪ →,
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− the reflexive, transitive closure of →, defined by

∗→ :=
⋃
i>0

→i,

− the reflexive, transitive closure of →, defined by

∗↔ := (← ∪ →)∗ =
⋃
i≥0

(← ∪ →)i,

This is also called the zig-zag relation generated by →.

These are called closures because they coincide with the smallest relation on X containing
→ and having the indicated property (refliexivity, transitivity, . . . ). When x ∗→ y, we
say that there is a rewriting or reduction sequence or path from x to y. When x ∗↔ y we
say that x and y are equivalent under →, or that there is a zig-zag sequence or path from
x to y.

A normal form of an ARS → is an element x ∈ X, such that for all y ∈ X, (x, y) 6∈→.
In other words, it is a maximal element for the relation →. Given x ∈ X, a normal form
of x is an element y such that there exists a rewriting path from x to y, i.e. x ∗→ y, and
y is a normal form. When no confusion is possible, we will denote a normal form of an
object x by x̂.

The zig-zag relation generated by an ARS → on a set X is an equivalence relation. It
describes the partitioning the set X into the classes of objects which are equal under
the system of calculation represented by the ARS. We denote the quotient of X by the
equivalence relation ∗↔ by X or X/ ∗↔.

5.1.4. Abstract rewriting properties. Now we define rewriting properties for
ARS. First, we introduce notation and terminology for relations generated by an ARS
→ and its inverse ←. These describe certain configurations, or shapes, of interest when
studying properties of the ARS represented by →.

− The local branching relation, denoted by ↙↘, is defined by

x↙↘y ⇐⇒ (x, y) ∈← ◦ → .

− the (global) branching relation, denoted by ↙∗↘, is defined by

x↙∗↘y ⇐⇒ (x, y) ∈ ∗← ◦ ∗→ .

− the confluence relation, denoted by ↘∗↙, is defined by

x↘∗↙y ⇐⇒ (x, y) ∈ ∗→ ◦ ∗← .
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The (local) branching relation represents a (local) choice in the method of calculation.
Indeed, when x and y are related by the (local) branching relation, they are rewritten
from a common element. Conversely, the confluence relation represents a reconciliation
in the system of calculation represented by the ARS in the sense that when x and y are
related by the confluence relation, they are rewritten to the same element.

i) An ARS→ is confluent (resp. locally confluent) if the branching relation (resp. local
branching relation) is included in the confluence relation, i.e.

↙∗↘ ⊆ ↘∗↙ (resp.↙↘ ⊆ ↘∗↙).

ii) We say that an ARS is Church-Rosser or has the Church-Rosser property if the
zig-zag relation is included in the confluence relation, i.e.

∗↔ ⊆ ↘∗↙.

iii) An ARS→ terminates, is terminating or is Noetherian if there are no infinite rewrite
paths. For relations, this property can be described by the following predicate:

∀P ⊆ X,P∆ ⊆ |R〉(P∆) ⇒ P = ∅.

iv) An ARS is convergent when it is both confluent and terminating.

5.1.5. Interpretation as properties of calculation. Confluence is a central
notion in abstract rewriting theory. Indeed, the inclusion means that the ARS is
consistent in the sense that whenever elements x and y are rewritten from a common
element, they will eventually be rewritten to the same element. In particular, the system
of calculation represented by the ARS is deterministic: starting at some element of X
and calculating in any way will either produce a unique answer, or an infinite rewrite
path. In other words, this means that normal forms are unique.

5.1.6. Lemma ([4]). Let →⊆ X ×X be a confluent ARS and x, y, y′ ∈ X. If y, y′ are
normal forms for x, then y = y′.

The inclusion required to fulfil the Church-Rosser property states another important
property of calculation, namely that whenever elements x and y are equivalent under the
rules of calculation, there exist (directed) rewrite paths, i.e. calculations, describing this
equivalence by reducing x and y to a common element in their equivalence class.

It expresses a seemingly stronger consistency property than confluence, in that it requires
that not only conflicting calculations will eventually be resolved, but that equivalence
itself is captured by calculation. However, one of the most classical theorems in abstract
rewriting theory, the Church-Rosser theorem, Theorem 5.1.10, states that this property
is in fact equivalent to that of confluence.

The third property of calculatory import is that of termination. Indeed, the predicate
above is interpreted as the statement: if P has no R-maximal element, P must be empty.
This assures the non-existence of infinite reduction sequences. In particular, it also
guarantees the existence of normal forms.
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5.1.7. Lemma ([4]). Let →⊆ X×X be a terminating ARS and x ∈ X. Then x admits
at least one normal form.

Convergence, i.e. confluence and termination, therefore represents the ideal situation for
an ARS representing a system of calculation. Indeed, it follows from the above that for a
convergent ARS, we have both existence and uniqueness of normal forms. This means
that the system of calculation represented by the ARS is will compute a unique answer
from any starting point.

5.1.8. Consistency theorems. In the following chapters, we will discuss coherence
properties for ARS. As described in the introduction, these rely on higher dimensional
cells encoding equivalences between rewrite paths. Here, we discuss Newman’s lemma
and the Church-Rosser theorem as proto-coherence theorems, resulting in what we call
the consistency theorem in this thesis.

As discussed in the previous paragraph, convergence of an ARS is a strong consistency
property. As we will see in following sections, the schema of coherence proofs is the
following: from local coherence and termination one proves global coherence in terms of
branchings, and then in terms of zig-zags. We describe this schema here in the context
of consistency for ARS.

First, we abuse terminology in this paragraph in order to mirror the procedure of
coherence proofs. A terminating ARS is said to be

i) locally, directedly consistent when it is locally confluent,

ii) directedly consistent when it is confluent,

iii) and consistent when it has the Church-Rosser property.

Newman’s lemma takes local directed consistency to global directed, consistency:

5.1.9. Theorem (Newman’s lemma [92]). Let → be an ARS. If → is locally con-
fluent and terminates, then → is confluent.

From global directed consistency, we obtain global consistency via the Church-Rosser
theorem:

5.1.10. Theorem (Church-Rosser theorem [22]). An ARS → is confluent, if, and
only if, it is Church-Rosser.

For the above, more modern proofs may be found in e.g. [4].

Thus, the consistency theorem for ARS states that a locally confluent and terminating
ARS has the Church-Rosser property.

5.1.11. Theorem (Consistency for ARS). Let → be a locally confluent, terminating
ARS. Then → is Church-Rosser.

It is an immediate consequence of the preceding theorems, and we highlight it only
to compare it to coherence theorems. Indeed, this procedure, taking local consistency
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properties to global consistency properties under the hypothesis of termination, will be
echoed in subsequent chapters when we treat coherence properties of ARS.

This theorem thus describes how local information can be propagated to a 0-dimensional
calculatory coherence property, i.e. consistency, in the sense that an ARS with the
Church-Rosser property computes equivalences. Indeed, given equivalent elements, this
property tells us that we can reduce them to the same normal form, which is unique by
confluence and exists by termination.

Furthermore, it shows that we can use the ARS to decide equivalence. Indeed, as a
consequence of the previous result, for a normalising and locally confluent ARS, to decide
equivalence of two elements x and y, it suffices to check the syntactical equality of their
normal forms x̂ and ŷ. If the normal forms are computable and the syntactic identity is
decidable then the equivalence is decidable.

5.1.12. Remark. One of the main benefits of the relational description of calculation
is that all of the properties are defined as simple inclusions and take place internally to
an algebra with a simple signature. Furthermore, the inclusion defining, for example
confluence, allows us to complete all branchings by confluences all at once. This contrasts
the polygraphic case, in which we must quantify universally over individual branchings
and existentially over individual confluences. This point-free description of calculatory
properties makes it an ideal setting for handling consistency properties, but is balanced
by the disadvantage of losing information about rewrite paths.

Indeed, when composing an ARS with itself, we lose information about the intermediary
points. For example, if (x, y), (x, y′) ∈ R and (y, z), (y′, z) ∈ S, the distinct reduction
sequences xRySz and xRy′Sz are identified. This can be summed up by saying that
(x, z) ∈ R ◦ S implies only that x is rewritten to z via some path consisting in an R-step
followed by an S-step. In this sense, relations provide information about connectedness
or equivalence of objects, but forget the choices made while rewriting.

In the following final paragraphs of this first section, we explore alternative relational
models for ARS which attempt to address these issues.

5.1.13. Multirewriting systems. Given sets X and Y , recall from that a mul-
tirelation M on X × Y is a map

M : X × Y −→ N,

where N = N ∪ {∞}. A multirewriting system over a set X is a multirelation on
X ×X.

Multirewriting systems over X are equipped with algebraic operations via those of N.
For multirewriting systems m1,m2 over X,

i) Addition: (m1 +m2)(x, y) = m1(x, y) +m2(x, y). The neutral element for addition
is the multirelation ∅multi which sends every pair (x, y) to 0.

ii) Composition: (m1;m2)(x, y) = Σy∈Xm1(x, y)×m2(y, z). The neutral element for
composition is the multirelation m∆ which sends every pair (x, y) to 1.
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The set of multirewriting systems over X, denoted by mRel(X), forms a semiring under
these operations. Furthermore, we have a homomorphism

b−c : mRel(X) −→ Rel(X)

m 7−→ bmc,

where bmc is defined by (x, y) ∈ bmc if, and only if, m(x, y) > 0. The rewriting properties
(confluence, termination,. . . ) of a multirelationm are defined to be those of the associated
relation bmc.

While multirelations allow us to consider several transitions between objects, these are
not labelled precisely enough to conserve information about how rewriting paths are
built from the initial multirewriting system.

5.1.14. Polyrewriting systems. We define a polyrewriting system on a set X to
be a family

{→i}i∈I
of binary relations on X. For brevity, a polyrewriting system will be denoted by ⇒I , or
simply by ⇒ when no confusion is possible. We denote the set of polyrewriting systems
on X by pRel(X).

The advantage of considering such objects is that they allow us to consider several parallel
rewriting steps, i.e. those which relate the same pair of elements but should be considered
as distinct: for i, j ∈ I with i 6= j, we may have x →i y and x →j y. In contrast to
multirewriting systems, these are labelled by the corresponding index.

A natural way of equipping polyrewriting systems with a notion of composition, is simply
to lift the composition of relations to the level of sets:

⇒I ◦⇒J := {→i ◦ →j}(i,j)∈I×J .

Note however, that there is not a unique identity element for this operation. Indeed, any
polyrewriting system {→i}i∈I such that ∪i∈I →i= ∆ is an identity.

For the addition operation, we have two choices:

⇒I +⇒J := {→k}k∈I∐ J or ⇒I ∪⇒J := {→i ∪ →j}(i,j)∈I×J .

The first consists in taking the union of the families ⇒I and ⇒J , and the second is the
lifting of the addition operation in Rel(X) to the set level.

However, we observe that there is a natural map sending polyrewriting systems to
multirewriting systems on some set X:

m(−) : pRel(X) −→ mRel(X)

⇒I 7−→ mI ,

where mI sends the pair (x, y) to the natural number mI(x, y) = |{i ∈ I | x→i y}|.
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This map commutes with the composition operations. Denoting by mI×J the image of
⇒I ◦⇒J , we have

mI×J(x, z) = |{(i, j) ∈ I × J | x→i ◦ →j z}|
= |{(i, j) ∈ I × J | ∃y ∈ X,x→i y ∧ y →j z}|
= Σy∈X |{(i ∈ I | x→i y}| × |{(j ∈ J | y →j z|
= (mI ;mJ)(x, z).

Similarly, this map commutes with the addition operation +. Furthermore, any element
which is an identity for the composition of polyrewriting systems is sent to the identity
element m∆ for multirewriting systems.

The rewriting properties of a polyrewriting system (confluence, termination, . . . ) are
defined to be those of its underlying multirewriting system.

5.1.15. Remark. As discussed in Remark 5.1.12, relational algebra give us no way of
expressing the existence of parallel transitions, and furthermore, no way of accessing
distinct rewriting paths. While poly- and multirelations are indeed enrichments of the
notion of (binary) relations, they fall short of providing a satisfactory model of calculatory
systems.

Indeed, in the context of multirewriting, we can encode the fact that there are several
parallel transitions between two given elements. However, similarly to the case of binary
relations, we have no way of distinguishing between parallel paths, nor of accessing the
rewriting paths. This is essentially due to the fact that transitions are not labelled. So
while multirelations equip us with a notion of parallelism, they have the same problem
as classical relations with respect to labels

The other relational approach described above, polyrewriting, attempts to solve this issue
by labelling binary relations with an indexing set. This allows us to distinguish between
different interleavings of compositions of the individual relations, for example →i ◦ →j

and →j ◦ →i. However, since this is essentially a lifting of the structure of binary
relations to the power-set level, we still lose information about distinct rewriting paths,
as exemplified in Remark 5.1.12. Furthermore, the algebraic properties of polyrelations
is not clear, nor easy to track.

In order to study coherence properties, some amount of access to specific rewriting paths.
We therefore turn to directed graphs, in which not only the vertices, but also the edges,
are labelled. This allows us to distinguish parallel rewriting paths as distinct words in the
labels. However, since we keep track of this information, we lose the point-free, relatively
simple expression of rewriting properties given in relational algebras.

5.2. Abstract rewriting with 1-polygraphs

Polygraphs are combinatorial objects which generate free (higher) categories. The
term polygraph comes from Street’s computads [106, 107], later dubbed polygraphs by
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Burroni [11, 12]. Here, we will discuss the description of abstract rewriting systems as
1-polygraphs. First, we recall the necessary definitions of categories.

5.2.1. Categories. To fix notation, we recall that a (small, strict) 1-category C, or
simply category when no confusion is possible, consists of the following data:

i) Sets C0 and C1 along with maps as in the following diagram:

C0 ι1 // C1.
s0

oo

t0
oo

Elements of C0 (resp. C1) are called 0-cells or objects (resp. 1-cells or morphisms).
The map ι1 is called the unit map, and for c ∈ C0, we denote by 1c the image of
c under ι1. This is called the identity on c. The maps s0 and t0 are known as
0-source and 0-target, or simply as source and target when no confusion is possible.
These satisfy the identity relations:

s0 ◦ ι1 = idC0 and t0 ◦ ι1 = idC0 .

ii) A partial composition operation, denoted by ?0. For 1-cells f and g, their composite,
denoted by f ?0 g, is defined provided that t(f) = s(g). This may be seen as an
operation

C1 ×C0 C1 −→ C1,

where C1 ×C0 C1 = {(f, g) | f, g ∈ C1, t(f) = s(g)}. We have the following identity
laws for composition:

f ?0 1t(f) = f and 1s(f) ?0 f = f,

and source and target maps interact with composition by

s(f ?0 g) = s(f) and t(f ?0 g) = t(g).

The set of 1-cells with source x and target y will be denoted by C(x, y) and is called a
hom-set. We will often denote the composition f ?0 g by fg when no confusion is possible.
Finally, we say that 1-cells f and f ′ are parallel when s(f) = s(f ′) and t(f) = t(f ′),
i.e. when f and f ′ belong to the same hom-set.

A 1-cell f of a category C is invertible if there exists a 1-cell g such that

f ?0 g = 1s(f) and g ?0 f = 1t(f).

The 1-cell g is then unique, and is called the inverse of f . It is denoted by f−1 or f−. A
category in which every 1-cell is invertible is called a groupoid.
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5.2.2. 1-polygraphs. A 1-polygraph P consists of a pair (P0, P1) of sets and two
functions

s0, t0 : P1 → P0,

called source and target, respectively. Such a structure is also referred to as a quiver or
directed pseudo-graph. Elements of P0 are called 0-cells or objects while elements of P1

are called generating 1-cells, or reduction or rewrite steps.

5.2.3. Free constructions. A 1-polygraph generates the free 1-category P ∗, also
denoted by P0[P1], whose objects, or 0-cells, are those of P and whose morphisms, or
1-cells, are formal compositions of generating 1-cells.

More precisely, we form the free finite words on the set P1 ∪ {1x}x∈P0 , where the 1x are
formal identity cells. We then eliminate words that don’t correspond to well-formed
compositions, i.e. we consider the set P̃1 consisting of words

f1f2 · · · fk,

on P1 ∪{1x}x∈P0 such that t0(fi) = s0(fi+1) for all 1 ≤ i < k. We then take the quotient
of P̃1 by the equivalence relation ' generated by the relation containing

f1 · · · fi1t(fi)=s(fi+1)fi+1 · · · fk → f1 · · · fifi+1 · · · fk. (5.2.4)

for all permitted sequences of generating 1-cells f1, . . . , fk. The relation (5.2.4) is the
congruence on P̃1 generated by the relation containing f1t0(f) → f and 1s0(f)f → f for
all generating 1-cells.

The quotient set P̃ / ' is denoted by P ∗1 . The pair (P0, P
∗
1 ) is naturally equipped with

the structure of a category.

i) We extend source and target maps freely on P̃1 by

s0(f1f2 · · · fk) = s0(f1) and t0(f1f2 · · · fk) = t0(fk).

These maps are compatible with the equivalence relation ', so we obtain induced
maps s0, t0 : P ∗1 → P0. The unit map takes a 0-cell x to the 1-cell 1x.

ii) The concatenation of words in P̃0, subject to the condition that source and targets
coincide correctly, passes to the quotient '. We denote the resulting operation by
?0.

The morphisms of this category are called reduction or rewriting sequences or paths in
the 1-polygraph P .

We also consider the free groupoid generated by P = (P0, P1). This is the groupoid
whose objects are those of P0 and whose morphisms are formal compositions of elements
of P1 and their formal inverses, quotiented by another equivalence relation ∼=. The set of
such permitted sequences of morphisms and formal inverses is denoted here by P̂1.
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Given a generating 1-cell f , we denote its formal inverse by f−. The equivalence relation
∼= is the symmetric, reflexive, transitive closure of the relation containing (5.2.4) and the
pairs

f1 · · · fiff−fi+1 · · · fk → f1 · · · fifi+1 · · · fk (5.2.1)
f1 · · · fif−ffi+1 · · · fk → f1 · · · fifi+1 · · · fk (5.2.2)

for all permitted sequences of 1-cells. This corresponds to the congruence generated
on P̂1 by the relation containing the pairs f1t0(f) → f , 1s0(f)f → f , ff− → 1s0(f) and
f−f → 1t0(f) for all generating 1-cells f .

The quotient set P̂1/ ∼= is denoted by P>1 , and we define the structure of a groupoid on
the pair (P0, P

>
1 ) similarly to the case of the free category construction. This groupoid is

denoted by P> or P0(P1). The morphisms of this groupoid are called zig-zag sequences
or paths.

In the case of 1-polygraphs, we will denote a 1-cell f ∈ P ∗ (resp. f ∈ P>) with source x
and target y by f : x→ y (resp. f : x↔ y) or by

x
f
// y (resp. x oo

f
// y ).

We denote by P 0 or P0/P1 the quotient of the set P0 by the equivalence relation ≡
given by connected components in P . Formally, x ≡ y if, and only if, there exists a
zig-zag sequence from x to y. This is the equivalence underlying the system of calculation
described by the 1-polygraph in question.

5.2.5. Underlying (poly)relation. A relation → defines a 1-polygraph (X,→) in
which source and target are given by the projections onto each coordinate. This gives a
1-polygraph in which transitions are labelled by pairs (x, y) and in which there are no
parallel paths: between any two 0-cells there is at most one transition. However, when
considering coherence properties, see Section 7, we will require manipulating parallel
reductions, i.e. those with the same source and target. Furthermore, to a 1-polygraph we
associate an underlying ARS. Polygraphs thus provide a finer description of calculatory
systems than ARS.

Given a 1-polygraph P = (P0, P1), we define an underlying polyrewriting system ⇒P on
P0 given by

⇒P= {→f}f ∈P1 , where →f= {(s0(f), t0(f))}.

That is, we take the family of singleton relations given by generating 1-cells of P . Note
that since there are no external algebraic operations on polygraphs, i.e. composition,
addition of polygraphs, we cannot talk about this map being a homomorphism.

We then also obtain an associated multirewriting system mP , and its underlying relation
bmP c. The latter, which will henceforth be denoted by →P , is given by

x→P y ⇐⇒ ∃u : x→ y ∈ P1,
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for all x, y ∈ P0. The relation →P is the “flattening” of the polygraph, in the sense that
we now only have information about connectivity of 0-cells, but have lost information
about distinct rewriting paths. Another way of saying this is that we have collapsed all
parallel morphisms into a single abstract transition.

5.2.6. Rewriting properties of 1-polygraphs. The rewriting properties of a
1-polygraph P are those of its underlying polyrewriting system ⇒P , and therefore those
of the ARS →P . In this way, we obtain notions of (local) confluence, termination and
consistency in the context of 1-polygraphs, see Section 5.1.

We obtain 1-polygraphic versions of Theorems 5.1.9 and 5.1.10 by applying the same to
the underlying ARS. We also obtain an analog of Theorem 5.1.11 for 1-polygraphs as an
immediate consequence. These results are expressed in the more general setting of higher
dimensional rewriting systems in Corollaries 5.4.14, 5.4.15 and 5.4.16, respectively.

5.3. String rewriting

A string rewriting system (SRS) is an abstract rewriting system on a free monoid [8] or a
free 1-category [68]. While abstract rewriting sequences describe directed subsystems
of an equivalence relation, string rewriting systems describe a directed subsystem of
congruences, i.e. equivalence relations which respect the underlying algebraic structure.
SRS can be described in the structure of a 2-polygraph, considering the 1-cells as elements
of the monoid or category, and 2-cells as the system of calculation. We recall the notion
of 2-polygraph here and relate SRS to abstract consistency, showing that the underlying
structure can be used to transport certain shapes into algebraic contexts. This leads to
the critical branching lemma, refining the consistency check for SRS.

5.3.1. 2-categories as enriched categories. A 2-category C consists of a set C0

of 0-cells, and for all x, y ∈ C0, a 1-category C(x, y), called the hom-category associated
to the pair (x, y). The 0- and 1-cells of hom-categories are called the 1- and 2-cells of C,
respectively. The composition in C(x, y) is called 1-composition.

These sets are equipped with algebraic laws providing the underlying structure of a
1-category.

i) For all 0-cells x, y, z, we have a functor

cx,y,z : C(x, y)× C(y, z) −→ C(x, z),

called the 0-composition.

ii) For every 0-cell x we have a specified 0-cell of C(x, x), denoted by 1x and called
the identity 1-cell on x.

This data is required to satisfy associativity laws: for all x, y, z, t ∈ C0,

cx,z,t ◦ (cx,y,z × IdC(z,t)) = cx,y,t ◦ (IdC(x,y) × cy,z,t),
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and unit laws: for all x, y ∈ C0,

cx,x,y ◦ (1x × IdC(x,y)) = cx,y,y ◦ (IdC(x,y) × 1y)

where 1x and 1y denote the constant functors equal to 1x and 1y respectively.

In the language of (higher) category theory, this is equivalent to saying that a 2-category
is a category enriched in categories. Indeed, a category C is enriched in a category V
when every hom-set C(x, y) of C is an object of V.

5.3.2. 2-categories as globular sets. In this thesis, we prefer to view 2-categories
as globular 2-sets with additional structure. This optic is equivalent to the definition
as enriched categories, but provides valuable diagrammatic intuitions, which is why we
develop it explicitly here.

A 2-category C consists of the following data:

i) A reflexive 2-globular set, that is, a diagram of sets and functions of the form

C0 ι1 // C1

s0
oo

t0
oo

ι2 // C1

s1
oo

t1
oo

Elements of Ci are called i-cells. The maps si, ti : Ci+1 → Ci, called i-source and
i-target respectively, satisfy the globular relations:

si ◦ si+1 = si ◦ ti+1, ti ◦ si+1 = ti ◦ ti+1 (5.3.3)

The globular relations (5.3.3) imply that any 2-cell f has a globular shape:

s0◦s1(f)=s0◦t1(f)

s1(f)

$$

t1(f)

::
t0◦s1(f)=t0◦t1(f)f

��

ii) The map ιi, the i-unit map, interacts with sources and targets via the unit laws :

si ◦ ιi+1 = idCi , ti ◦ ιi+1 = idCi . (5.3.4)

As before, the identity 1-cell (resp. 2-cell) on a 0-cell x (resp. 1-cell u) is denoted by
1x (resp. 1u). Note that every 0-cell x has a unique identity 2-cell 11x = ι2 ◦ ι1(x).
Graphically, these identities are represented, respectively, by

x

1x

��

x u
// y

1u

x�
x

11x

z�
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iii) The pairs (C0, C1) and (C1, C2) have the structure of 1-categories; we denote their
composition operations by ?0 and ?1, respectively.

As a consequence of globularity, the pair (C0, C2) is naturally equipped with the
structure of a 1-category. Indeed, we define source and target maps as the composites
s0 ◦ s1 and t0 ◦ t1. These are still denoted s0 and t0, respectively, abusing notation.
The 0-composition of 2-cells, denoted by ?0, extends that of (C0, C1) via globularity,
in the sense described by the following diagram:

p
""

<< q
""

<< rf
��

g
��

We have the usual categorical laws for interaction between 0-source and 0-target in
(C0, C2), namely

s0(f ?0 g) = s0(f) and t0(f ?0 g) = t0(g),

but, as the diagram indicates, the 1-source and 1-target are homomorphisms for
the 0-composition of 2-cells in the sense that

s1(f ?0 g) = s1(f) ?0 s1(g) and t1(f ?0 g) = t1(f) ?0 t1(g).

iv) The composition operations ?0 and ?1 satisfy the strict interchange law

(f ?1 f
′) ?0 (g ?1 g

′) = (f ?0 g) ?1 (f ′ ?0 g
′), (5.3.5)

for all 0 ≤ j < k < n, and whenever all compositions are defined. In the
diagrammatic notation, the interchange law (5.3.5), is represented by

x
��
//
@@
y

f��

f ′��
?0 y

��
//
AA
z

g��

g′��
=

x
''
88 y

''
88 zf�� g��

?1

x
''
88 y

''
88 zf ′�� g′��

Note that whenever the expression on the left of (5.3.5) is defined, the right side is
too. However, the converse does not hold, due to compositions of the form

⇓ f ⇓ g
x //

!!

FF
y //

<<
z //

��

w,

⇓ f ′ ⇓ g′

for which (f ?0 g) ?1 (f ′ ?0 g
′) is a well-formed 2-cell, whereas the 1-compositions f ?1 f

′

and g ?1 g
′ are not defined.

For more details on 2-categories, both in the enriched description and that using globular
sets, we invite the reader to consult [89, XII. 3.]. In the rest of this thesis, we will take
this point of view on 2-categories, although we remind the reader that the two definitions
are equivalent.



5.3. STRING REWRITING 81

5.3.6. Notation. We abuse notation, denoting by C1 the underlying 1-category (C0, C1)
of C. The (k − 1)-composition of k-cells f and g is denoted by juxtaposition fg, and the
(k − 1)-source sk−1(f) and the (k − 1)-target tk−1(f) of a k-cell f are denoted by s(f)
and t(f), respectively. To highlight the relative dimensions of cells, we denote 1-cells by
single arrows → and 2-cells by double arrows ⇒.

5.3.7. Whiskers. In order to define the composition of 1- and 2-cells, we use the
identity 2-cells on 1-cells. Let u, v be 1-cells and f a 2-cell such that t0(u) = s0(f)
and t0(f) = s0(v). The whiskering of f by u (on the left) and v (on the right) is the
composite 1u ?0 f ?0 1v. In diagrammatic notation, this is represented by

s0(u)
u
// t0(u)=s0(f)

s1(f)

##

t1(f)

::
t0(f)=s0(v)

v
// t0(v)f

��

1u

Rf

1v

Rf

To simplify notation, we denote this k-cell by ufv, and will diagrammatically represent
such a cell as above but without the identity 2-cells 1u and 1v.

5.3.8. (2, 1)-categories and 2-groupoids. In a 2-category, a k-cell f of C is i-
invertible if there exists a k-cell g in C with i-source ti(f) and i-target si(f) in C called
the i-inverse of f , which satisfies

f ?i g = 1si(f) and g ?i f = 1ti(f).

The i-inverse of a k-cell is necessarily unique. When i = k − 1, we say that f : u → v
is invertible and we denote its (k − 1)-inverse by f−1 : v → u or f− : v → u, which we
simply call its inverse.

A (2, 1)-category is a 2 category in which all 2-cells are invertible. In the language of
enriched categories, this is equivalent to saying that it is a category enriched in groupoids.
Similarly, a 2-groupoid, also called a (2, 0)-category, is a 2-category in which all cells are
invertible, i.e. a groupoid enriched in groupoids.

5.3.9. Cellular extensions. To better define 2-polygraphs, we first define cellular
extensions of categories, and the resulting free constructions and quotients. Cellular
extensions are a generalisation of the notion of relations in the setting of categories. We
fix a small category C.

A sphere in C is a pair (f, g) of parallel 1-cells. For a sphere (f, g), we say that f is its
source and that g is its target. A category is aspherical if all of its spheres are of the
form (f, f). A cellular extension of C is a subset of the spheres in C. This is formally
encoded by a set Γ equipped with a map ∂ to the set of spheres in C.

C1 Γ
∂

oo
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For α ∈ Γ, the boundary of the sphere ∂(α) is denoted (s1(α), t1(α)), so we may think
of a cellular extension as a set of generating 2-cells α : f ⇒ g, where f and g are
parallel 1-cells of C. We naturally obtain two maps s1, t1 : Γ→ C1 satisfying the globular
relations

s0 ◦ s1 = s0 ◦ t1 and t0 ◦ s1 = t0 ◦ t1.

Analogously, we can define cellular extensions of 2-categories as subsets of 2-spheres,
i.e. parallel 2-cells, see Section 5.4.8.

5.3.10. Free constructions and quotients. Given a cellular extension Γ of C,
we construct the free 2-category C[Γ] generated by Γ over C, which has the same 0- and
1-cells as C, and in which 2-cells are formal composites of elements of Γ. In other words,
each hom-category C[Γ](x, y), where x, y are 0-cells of C, is the free category generated
from the 1-polygraph with 0-cells C(x, y) and generating 1-cells ∂−1(C(x, y)).

The quotient C/Γ of C by a cellular extension Γ is the category in which we identify
1-cells which are the source and target of some element of Γ. This quotient has the
structure of a 1-category because of the globular shape of the elements of Γ.

We similarly define the quotient 2-category of some 2-category by a cellular extension.
Given a 1-cell f or a 2-cell α, we denote their equivalence classes in a quotient category
by f and α respectively.

The notion of quotient leads to another free construction resulting in a (2, 1)-category.
Given a cellular extension Γ of C, we define Γ− to be the cellular extension in which
the source and target of spheres in Γ have been inverted. Formally, for each element
α : f ⇒ g of Γ, we have a sphere α− : g ⇒ f in Γ−. We then construct the free 2-category
C[Γ,Γ−], where 2-cells are formal composites of spheres in Γ and their formal inverses.
Then, we define a cellular extension Inv(Γ) of C[Γ,Γ−] consisting of 3-cells

α ?1 α
− V 1f and α− ?1 αV 1g

for every α : f ⇒ g of Γ. The quotient of C[Γ,Γ−] by this extension, C(Γ), is the free
(2, 1)-category generated by Γ over C:

C(Γ) := C[Γ,Γ−]/Inv(Γ).

Equivalently, each hom-category C(x, y) is the free groupoid generated by the 1-polygraph
with 0-cells C(x, y) and generating 1-cells ∂−1(C(x, y)).

5.3.11. 2-Polygraphs. We now have the vocabulary to introduce 2-polygraphs as
presentations of categories. We have already introduced 1-polygraphs as a generalisation
of directed graphs, but they fit into an inductive definition of higher structures as follows:
a 0-polygraph is a set P0, and a 1-polygraph is a directed (pseudo-)graph (P0, P1). The
latter may be seen as a cellular extension of the set P0. This observation leads to the
definition of 2-polygraph.
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A 2-polygraph is a triple P = (P0, P1, P2) where P2 is a cellular extension of P ∗. This
corresponds to the following diagram in the category of sets:

P0 P ∗1s0
oo

t0
oo

P1

OO

s0

dd

t0

dd

P2

s1

dd

t1

dd

Here we have denoted the source and target maps of P by s0, t0 in order to notationally
distinguish them from their free extensions s0, t0 to P ∗. In general, however, we do not
notationally distinguish the source and target maps associated to a cellular extension
from those obtained in the free constructions. The maps s1, t1 are called the 1-source
and 1-target, respectively, and elements of P2 are called generating 2-cells.

A 2-polygraph P = (P0, P1, P2) generates free 2-categorical structures. Firstly, the free
2-category generated over P , denoted by P ∗ and defined by

P ∗ := P ∗1 [P2].

We also define the free (2, 1)-category over P . Denoted P>, this is the free (2, 1)-category
generated by P2 over P ∗1 , i.e.

P> := P ∗1 (P2) = P ∗1 [P2, P
−
2 ]/Inv(P2).

5.3.12. Presentations of categories. We fix a 2-polygraph P = (P0, P1, P2).

The category presented by P , given by

P := P ∗/P2.

We say that P presents a category C when P ∼= C. In this case, the set of 0-cells of C
is P0, and we say that P1 is the set of generating 1-cells of C, while the elements of P2

are called its relations. For a 2-cell α : f ⇒ g of P , we consider its class in P to be
α = f = g.

5.3.13. Rewriting with 2-polygraphs. We can view a polygraphic presentation
of a category C as a rewriting system on the 1-cells of C. However, we must place the
generating 2-cells in context to generate a congruence relation. This is implicit in the free
category construction, as will be made explicit below. We fix a 2-polygraph P .

The underlying rewriting 1-polygraph associated to P , denoted by P c, is given by (P ∗1 , P
c
2 ),

where
P c2 = {uαv|u, v ∈ P ∗1 , α ∈ P2, t0(u) = s0(α) ∧ t0(α) = s0(v)}.

The set P c2 is the congruence on P ∗1 generated by elements of P2, also called the cells
of P2 in context. The source and target maps are those of P ∗, i.e. s(uαv) = us1(α)v
and t(uαv) = ut1(α)v. Due to laws of categorical algebra, most notably the strict
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exchange law, any 2-cell in the free category generated by P can be uniquely written as
a 1-composite of 2-cells in context, that is of the form uαv, see [65, Prop. 2.1.5].

The rewriting properties (confluence, termination, . . . ) of a 2-polygraph are those of its
underlying rewriting 1-polygraphWe recover an ARS ⇒P from a 2-polygraph P . Indeed,
⇒P is the underlying ARS of the rewriting 1-polygraph P c associated to P .

5.3.14. Branchings in SRS. In the setting of 2-polygraphs, a branching of P is a
pair (α, β) of elements of P ∗2 with common source. This may be represented by either of
the following diagrams:

x

v

""
u //

w

<< y
α
EY

β��

u

α

��

β

	�
v w

As before, the source of a branching (α, β) is their common source u. We say that a
branching (α, β) is local when α and β are rewriting steps. A local branching is aspherical
when it is of the form (α, α), and is Peiffer when it is of the form

x

u′

��

u
// y

v′

EE

v
// z

α
EY

β��

uv

αv

��

uβ

� 
u′v uv′

with α : u⇒ u′ and β : v ⇒ v′. The remaining local branchings are called overlapping
branchings. Overlapping branchings, as their name indicates, reduce two different 1-cells
which overlap non-trivially, as indicated in the following diagram:

⇑ α
x

l
//

!!

y m //
<<

z
r

// w

⇓ β

The above diagram shows an overlapping branching (αr, lβ) on the 1-cell rml. We equip
these overlapping branchings with an order (α, β) ≺ (uαv, uβv) for all 1-cells u, v for
which the above makes sense. The overlapping branchings which are minimal with respect
to this order are called the critical branchings.

5.3.15. The critical branching lemma. The only rewriting property of a 2-
polygraph P not described by its underlying ARS⇒P is the following notion of confluence
relative to critical branchings. We say that P is critically confluent when its critical
branchings are confluent.

Following the general schema of rewriting theory, that is using local information to deduce
global properties, thereby reducing the number of checks required to assure consistency of
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the entire system, the notion of critical branching is exploited in string rewriting theory
to further reduce the checks involved. Indeed, critical confluence is sufficient to deduce
local confluence.

5.3.16. Theorem (Critical branching lemma [68]). Let P be a 2-polygraph. Then
P is critically confluent if, and only if, it is locally confluent.

We also obtain analogs of Theorems 5.1.9 and 5.1.10 for 2-polygraphs by considering the
ARS underlying their underlying rewriting 1-polygraphs, see Corollaries 5.4.14 and 5.4.15.
In particular, we obtain a finer consistency theorem for 2-polygraphs, reducing the
consistency check to critical, rather than local, branchings.

5.3.17. Theorem (Critical consistency). Let P be a critically confluent, terminating
2-polygraph. Then P is Church-Rosser.

5.4. Higher-dimensional rewriting

Here we recall notions of higher-dimensional abstract rewriting. In particular, we recall
the definition of n-polygraphs [12], also called computads in [106], see also [67, 91],
and their properties as rewriting systems presenting higher-dimensional categories. As
described in Section 5.4.12, the final dimension of such structures is implicitly the
dimension of abstract rewriting. We start with definitions and terminology for higher
categories and refer to standard textbooks for details [86, 89].

5.4.1. Higher categories. Let n be a natural number. A (strict globular) n-category
C consists of the following data.

i) A reflexive n-globular set, that is, a diagram of sets and functions of the form

C0 ι1 // C1

s0
oo

t0
oo

ι2 // · · ·
s1

oo

t1
oo

ιn−1 // Cn−1

sn−2
oo

tn−2

oo
ιn // Cn
sn−1
oo

tn−1

oo

whose functions si, ti : Ci+1 → Ci and ιi : Ci−1 → Ci satisfy the globular relations

si ◦ si+1 = si ◦ ti+1, ti ◦ si+1 = ti ◦ ti+1 (5.4.2)

and the identity relations

si ◦ ιi+1 = idCi , ti ◦ ιi+1 = idCi . (5.4.3)

ii) It is equipped with a structure of category on

Ck C`
s`k

oo

t`k

oo
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for all k < `, where

s`k := tk ◦ . . . ◦ t`−2 ◦ t`−1 and t`k := sk ◦ . . . ◦ s`−2 ◦ s`−1,

and whose k-composition morphism on C` is denoted by ?`k : C` ×Ck C` → C`, where
C` ×Ck C` is the set of paris of k-composable `-cells, i.e. pairs (f, g) ∈ C` × C` such
that t`k(f) = s`k(g).

iii) The 2-globular set

Cj Ck
skj

oo

tkj

oo C`
s`k

oo

t`k

oo

is a 2-category for all j < k < `, see Section 5.3.2.

5.4.4. Terminology and notation. The elements of Ck are called k-cells of C. For
0 ≤ k < n, we abuse notation, denoting by Ck the underlying k-category of k-cells of C.
We further abuse notation by denoting maps s`k and t`k by sk and tk for all 0 ≤ ` < n,
and similarly ?`k will simply be denoted by ?k. The maps si, ti and ιi are called i-source,
i-target and i-unit maps, respectively. For a k-cell f of C and for 0 ≤ i < k, we call
si(f) (resp. ti(f)) the i-source (resp. i-target) of f . We denote the identity (k + 1)-cell
of ιk+1(f) by 1f . When f and g are i-composable k-cells, for i < k, that is when
ti(f) = si(g), we denote their i-composite by f ?i g. By condition iii), the composition
operations satisfy the interchange law

(f ?j f
′) ?i (g ?j g

′) = (f ?i g) ?j (f ′ ?i g
′), (5.4.5)

for all 0 ≤ i < j < n, and whenever all compositions are defined.

The (k − 1)-composition of k-cells f and g is denoted by juxtaposition fg, and the
(k − 1)-source sk−1(f) and the (k − 1)-target tk−1(f) of a k-cell f are denoted by s(f)
and t(f), respectively. To highlight the relative dimensions of cells, we denote them by
single arrows →, double arrows ⇒, and triple arrows V. In particular, if we denote a
k-cell in C by f : u ⇒ v, then we denote (k − 1)-cells of C by u : p → q the and the
(k + 1)-cells of C by A : f V g in to distinguish their dimensions notationally. Such
globular cells are depicted as follows:

p

u

""

v

<< qf
��

g
��

A
%9

The globular relations (5.4.2) imply that any k-cell f has a globular shape with respect
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to its i- and j-sources and targets for 0 ≤ i < j < n:

si◦sj(f)=si◦tj(f)

sj(f)

&&

tj(f)

77
ti◦sj(f)=ti◦tj(f)f

��

In diagrams, the interchange law (5.4.5) is illustrated by:

p
��
//
@@
q

f��

f ′��
?i q

��
//
AA
r

g��

g′��
=

p
&&
88 q

&&
88 rf�� g��

?j

p
&&
88 q

&&
88 rf ′�� g′��

5.4.6. Identities and whiskers. Given a k-cell f , the identity l-cell on f for
k ≤ l ≤ n is denoted by ιlk(f) and defined by induction, setting ιkk(f) := f and
ιlk(f) := 1ιl−1

k
for k < l ≤ n. In this way, for 0 ≤ k < l ≤ n, we associate a unique

identity cell ιlk(f) of dimension l to every k-cell f , which is called the l-dimensional
identity on f .

In higher category theory, the use of such iterated identities is necessary for defining
compositions between cells of different dimension. For 0 ≤ i < k < l ≤ n, a k-cell f and
a l-cell g such that ti(f) = si(g), the i-composite of f and g is defined as

f ?i g = ιlk(f) ?i g.

If ti(g) = si(f), we define g ?i f = g ?i ι
l
k(f).

For 0 ≤ i < j < k, an (i, j)-whiskering of a k-cell f is a k-cell ιkj (u) ?i f ?i ι
k
j (v), where u

and v are j-cells, as in the following diagram:

si(u)
u
// si(f)

sj(f)

!!

tj(f)

==
ti(f)

v
// ti(v)f

��

ιkj (u)

Rf

ιkj (v)

Rf

To simplify notation, we denote this k-cell by u ?i f ?i v. A (k − 1, k − 1)-whiskering
1u ?k−1 f ?k−1 1v of a k-cell f is called a whiskering of f and denoted by ufv.

5.4.7. (n, p)-categories. If C is an n-category and 0 ≤ i < k ≤ n, a k-cell f of C is
i-invertible if there exists a k-cell g in C with i-source ti(f) and i-target si(f) in C called
the i-inverse of f , which satisfies
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f ?i g = 1si(f) and g ?i f = 1ti(f).

The i-inverse of a k-cell is necessarily unique. When i = k − 1, we say that f : u → v
is invertible and we denote its (k − 1)−inverse by f−1 : v → u or f− : v → u for short,
which we simply call its inverse. If in addition the (k − 1)-cells u and v are invertible,
then there exist k-cells

u− ?k−2 f
− ?k−2 v

− : u− → v−, v− ?k−2 f
− ?k−2 v

− : u− → v−

in C. For a natural number p ≤ n, or for p = n =∞, an (n, p)-category is an n-category
whose k-cells are invertible for every k > p. In the language of enriched categories,
when n <∞, this is a p-category enriched in (n− p)-groupoids and, when n =∞, is a
p-category enriched in ∞-groupoids.

5.4.8. Spheres and cellular extensions. Let C be an n-category. A 0-sphere of C
is a pair of 0-cells of C. For 1 ≤ k ≤ n, a k-sphere of C is a pair (f, g) of k-cells such that
sk−1(f) = sk−1(g) and tk−1(f) = tk−1(g). We denote by Sphk(C) the set of k-spheres of
C.

A cellular extension of C is a set Γ equipped with a map ∂ : Γ→ Sphn(C). For α ∈ Γ,
the boundary of the sphere ∂(α) is denoted (sn(α), tn(α)), defining in this way two maps
sn, tn : Γ→ Cn satisfying the following globular relations

sn−1 ◦ sn = sn−1 ◦ tn and tn−1 ◦ sn = tn−1 ◦ tn.

The free (n+1)-category over C generated by the cellular extension Γ is the (n+1)-category,
denoted by C[Γ] and defined as follows:

i) its underlying n-category is C,

ii) its (n+ 1)-cells are built as formal i-compositions, for 0 ≤ i ≤ n, of elements of Γ
and k-cells of C, seen as (n+ 1)-cells with source and target in Cn.

The second point is formalised by each hom-category Cn(f, g) being generated freely by
the 1-polygraph with 0-cells the elements of Cn(f, g) and whose generating 1-cells are
∂−1(Cn(f, g)), see Section 5.2.3.

The quotient of the n-category C by Γ, denoted by C/Γ, is the n-category we obtain from
C by identifying the n-cells sn(α) and tn(α), for every n-sphere α of Γ.

The free (n+ 1, n)-category over C generated by Γ, denoted by C(Γ), is defined by

C(Γ) = C[Γ,Γ−]/Inv(Γ)

where

i) Γ− is the cellular extension of C made of spheres α− = (tn(α), sn(α)), for each α in
Γ,
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ii) Inv(Γ) is the cellular extension of the free (n + 1)-category C[Γ,Γ−], made of
(n+ 1)-spheres

(α ?n α
−, 1sn(α)), (α− ?n α, 1tn(α)).

We refer to [67, 91] for explicit free constructions on cellular extensions over an n-
category.

5.4.9. Remark. Given a cellular extension Γ of an n-category C, we denote by Γc the
set of cells of Γ in context, that is the set of (n+ 1)-cells of the form

fn ?n−1 . . . ?2 (f2 ?1 (f1 ?0 α ?0 g1) ?1 g2) ?2 . . . ?n−1 gn,

where fi, gi are i-cells of C for 0 ≤ i ≤ n, and α ∈ Γ. Recall from [65, Prop. 2.1.5], that
any (n+1)-cell γ in the free (n+1)-category C[Γ] can be written as an n-composition

γ = γ1 ?n γ2 ?n . . . ?n γk,

where the γi are (n+ 1)-cells of Γc, using the algebraic laws of higher categories, most
notably the interchange laws. Similarly, any (n+ 1)-cell γ in the free (n+ 1, n)-category
C(Γ) can be written as an n-composition

γ = γε11 ?n γ
ε2
2 ?n . . . ?n γ

εk
k ,

where the γi are (n+ 1)-cells of Γc and εi ∈ {−1, 1}.

5.4.10. n-polygraphs. Polygraphs generate free higher categories. They are defined
by induction on the dimension as follows: for n ≥ 0, an n-polygraph P consists of a set
P0 and for every 0 ≤ k < n a cellular extension Pk+1 of the free k-category

P0[P1] . . . [Pk].

For 0 ≤ k ≤ n, the elements of Pk are called the generating k-cells of P .

The free n-category P0[P1] . . . [Pn−1][Pn] (resp. the free (n, n−1)-category P0[P1] . . . [Pn−1](Pn))
generated by P will be denoted by P ∗ (resp. P>).

5.4.11. (n, p)-polygraphs. Just as n-polygraphs generate free n-categories, (n, p)-
polygraphs generate free (n, p)-categories. An (n, p) polygraph is a tuple (P0, P1, . . . , Pn)
such that

i) (P0, P1, . . . , Pp) is a p-polygraph,

ii) for all p ≤ i < n, Pi+1 is a cellular extension of the free (i, p)-category generated
by (P0, P1, . . . Pi), denoted by P>i . In the notation above, we write

P>i = P ∗p (Pp+1) . . . (Pk).

We refer to [65, 67] for the details on (n, p)-polygraphs.
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5.4.12. Underlying rewriting 1-polygraph. Just as in the case of 2-polygraphs,
we obtain an underlying 1-polygraph describing the rewriting properties of an n-polygraph.
Indeed, it is the final cellular extension that provides the rewriting system on the
underlying (n− 1)-dimensional structure. The latter is the structure presented by an
n-polygraph, so its (n−1)-cells should constitute the 0-cells of the underlying 1-polygraph.
As with 2-polygraphs, it is the n-cells in context which determine the 1-cells.

Explicitly, the underlying rewriting polygraph associated to an n-polygraph P = (P0, . . . , Pn),
denoted by P c, is the 1-polygraph whose 0-cells are given by the set P ∗n−1 of (n− 1)-cells
in the free (n− 1)-category generated by (P0, . . . , Pn−1), and whose 1-cells are given by
P cn. Denote by α̃ an element of P cn, that is there exist pairs (fi, gi) of i-cells, 1 ≤ i < n
and an element α ∈ Pn such that

α̃ = fn−1 ?n−2 . . . ?2 (f2 ?1 (f1 ?0 α ?0 g1) ?1 g2) ?2 . . . ?n−2 gn−1.

The source and target maps of the 1-polygraph P c are given by those of P ∗, that is

s(α̃) = fn−1 ?n−2 . . . ?2 (f2 ?1 (f1 ?0 sn−1(α) ?0 g1) ?1 g2) ?2 . . . ?n−2 gn−1

t(α̃) = fn−1 ?n−2 . . . ?2 (f2 ?1 (f1 ?0 sn−1(α) ?0 g1) ?1 g2) ?2 . . . ?n−2 gn−1.

The underlying rewriting 1-polygraph encodes the properties of Pn as a rewriting system
on P ∗n−1. Indeed, as a result of Remark 5.4.9, the n-cells of P ∗ (resp. P>) are in
bijective correspondence with the 1-cells of (P c)∗ (resp. (P c)>), as pointed out in
Remark 5.4.9.

Therefore, the rewriting properties (confluence, termination, . . . ) of P are defined to
be those of P c. In particular, we also obtain an underlying ARS (that of P c) which
we denote by VP . As pointed out in Remark 5.4.9, the correspondence between the
relational ARS VPn and the categorical point of view holds.

5.4.13. Consistency theorems for n-Polygraphs. We obtain higher dimen-
sional analogs of Theorems 5.1.9 and 5.1.10. These are immediate corollaries of the
corresponding results, using the notion of underlying rewriting polygraph and the ARS
underlying them.

5.4.14. Corollary (n-Polygraphic Newman’s lemma). Let P be a locally confluent,
terminating n-polygraph. Then P is confluent.

5.4.15. Corollary (n-Polygraphic Church-Rosser theorem). Let P be an n-polygraph.
Then P is confluent if, and only if, P is Church-Rosser.

We then also obtain an analog of Theorem 5.1.11 as an immediate consequence of the
above.

5.4.16. Theorem (n-Polygraphic consistency theorem). Let P be a locally con-
fluent, terminating n-polygraph. Then P is Church-Rosser.
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5.4.17. Remark. We also have a critical consistency theorem for n-polygraphs, which
we do not treat here. Indeed, a notion of critical branchings may also be defined in the
case of n-polygraphs, and the proof follows the schema of Theorem 5.3.17; we refer the
reader to [65].

This, just as the above theorems do, reflects the independency of notions of abstract or
string rewriting from the dimension of the considered polygraph. Indeed, in the case of
abstract rewriting, we only need a 1-dimensional structure, hence the introduction of the
notion of underlying rewriting 1-polygraph. For string rewriting, we must consider three
dimensions: the first two encode the algebraic structure presented by the SRS, and the
third represents the rewriting system on it.
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Chapter 6.
Algebraic abstract rewriting

In this second preliminary chapter, we present the algebraic approach to rewriting. As
described in Section 5.1, systems of calculation find a model in binary relations over a set.
The definitions from that section rely on the algebraic structure encoded by the relation
algebra over a set. Here, we present a more general description of abstract rewriting in
the setting of Kleene algebra, originally introduced as regular algebras by Conway [23].
Kleene algebras have found a variety of applications, notably in language and automata
theory [82, 83], as well as in program verification, see [118], also via formal methods [3, 94].
Here, we focus on their use in the description of abstract rewriting systems, notably
in [28, 109]. An overview of modal Kleene algebra is provided by [27].

We start in Section 6.1 by providing definitions of the algebraic structures in play,
most notably describing how modal operators may be obtained from a formalisation
of the notion of (co-)domain. We also provide a novel approach to converses in such
modal Kleene algebras in Section 6.1.17, alongside the more classical description, and
provide models of Kleene algebra in Sections 6.1.21 and 6.1.22. We then describe how
properties of calculation may be expressed in this algebraic context in Section 6.2 from [28].
Notably, we recall Newman’s lemma, Theorem 6.2.9, and the Church-Rosser theorem,
Theorem 6.2.10, and formulate a consistency theorem for systems of calculation described
by Kleene algebra, Theorem 6.2.11.

This chapter presents one new result, first appearing in [17], namely Theorem 6.1.7.
Other results and definitions appear in [28, 109].

6.1. Modal Kleene algebras

6.1.1. Semirings. Recall that a semiring is a tuple (S,+, 0, ·, 1) made of a set S and
two binary operations + and · such that (S,+, 0) is a commutative monoid, (S, ·, 1) is a
monoid whose multiplication operation · distributes on the left and the right over the
addition operation +, and 0 is a left and right zero for multiplication.

A dioid is a semiring S in which addition is idempotent, i.e. for all x ∈ S, we have

93
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x+ x = x. In this case, the relation defined by

x ≤ y ⇐⇒ x+ y = y, (6.1.2)

for all x, y ∈ S, is a partial order on S, with respect to which addition and multiplication
are monotone, and 0 is minimal. Where there is no possible confusion, we will often
denote multiplication simply by juxtaposition. A bounded distributive lattice is a dioid
(S,+, 0, ·, 1), whose multiplication · is commutative and idempotent, and x ≤ 1, for every
x ∈ S.

6.1.3. Domain semirings. Recall from [29] that a domain semiring is a dioid
(S,+, ·, 0, 1) equipped with a domain operation d : S → S that satisfies the following five
axioms for all x, y ∈ S:

i) x ≤ d(x)x,

ii) d(xy) = d(xd(y)),

iii) d(x) ≤ 1,

iv) d(0) = 0,

v) d(x+ y) = d(x) + d(y),

These structures are called domain semirings and not domain dioids because a semiring
equipped with a domain operation is automatically idempotent.

Intuitions for the domain axioms are given in Examples 6.1.21 and 6.1.22 below. In the
first, we show that the notion of domain for binary relations satisfies the domain semiring
axioms. The second example shows that the algebra of sets of paths over a 1-polygraph
satisfies the domain semiring axioms. The domain of a set of paths then corresponds to
the set of all sources of paths in the set.

Consequences of the domain semiring axioms include the fact that the image of S under
d is the set of fixpoints of d , that is,

Sd := {x ∈ S | d(x) = x} = d(S),

and that Sd forms a distributive lattice with + as join and · as meet, bounded by 0
and 1. It contains the largest Boolean subalgebra of S bounded by 0 and 1 [29]. We
henceforth write p, q, r, . . . for elements of Sd and refer to Sd as the domain algebra of S.
In particular, Sd is a subsemiring of S in the sense that its elements satisfy the semiring
axioms, 0 and 1 are in the set, and the set is closed with respect to · and +.

In the relational model of domain semirings, the set Sd consists of the set of all relations
included in the identity relation, called subidentities. In the path model, it consists of
subsets of the set of all paths of length 0. In both cases, the distributive sublattices form
Boolean algebras.
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Note that by multiplying both sides of axiom iii) on the left by x, we have d(x)x ≤ x.
This, combined with axiom i) gives

d(x)x = x,

which coincides with the intuition that restriction of x on the left by its domain does
nothing. Further properties of domain semirings include

d(0) = 0, d(px) = pd(x), x ≤ y ⇒ d(x) ≤ d(y),

for all x, y ∈ Sd, and d commutes with all existing sups [29].

6.1.4. Boolean domain semirings. A limitation of domain semirings is that
Boolean complementation in Sd cannot be expressed; these structures admit chains
as models [29]. Yet complementation is desirable for at least two reasons: it reflects
the Boolean nature of the domain algebras of the models in which we are interested.
Furthermore, it allows us to define a modal box operator from the modal diamond,
built using domain, via standard De Morgan duality, see (6.1.8). We need both Boolean
domain algebras and the box-diamond duality in the proof of coherent Newman’s lemma
in Section 9.3.

To enforce Boolean domain algebras, it is standard to axiomatise a notion of antidomain
that abstractly describes those elements that are not in the domain of a particular
element. The antidomain of a relation, for instance, models the set of all elements that
are not related to any other element of the underlying set; the antidomain of a set of
paths corresponds to the set of all vertices of the underlying graph that are not a source
of any path in the set.

A Boolean domain semiring [29] is a dioid (S,+, 0, ·, 1) equipped with an antidomain
operation ad : S → S that satisfies the following three axioms, for all x, y ∈ S:

i) ad(x)x = 0,

ii) ad(xy) ≤ ad(x ad2(y)),

iii) ad2(x) + ad(x) = 1.

As the antidomain operation is, implicitly, the Boolean complement of the domain
operation, the domain of an element is the antidomain of its antidomain, d = ad2. Hence
we recover a domain semiring, that is, defining the map d in this way gives a domain
semiring. In the presence of the operation ad , the subalgebra Sd of all fixpoints of d in S
is now the greatest Boolean algebra in S bounded by 0 and 1, and Sd = ad(S). Finally,
ad acts as Boolean complementation on Sd , giving it the structure of a Boolean algebra.
We therefore denote the restriction of ad to Sd by ¬.

6.1.5. Modal semirings. We denote the opposite of a semiring S, in which the
order of multiplication has been reversed, by Sop . It is once again a semiring.

A codomain (resp. Boolean codomain) semiring is a semiring equipped with a map
r : S → S (resp. ar : S → S) such that (Sop , r) (resp. (Sop , ar)) is a domain (resp.
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Boolean domain) semiring. The codomain operation models the domain of the converse
relation in the relational model, and in the path model the set of all targets of paths in a
given set of paths.

Consider a semiring equipped with a domain and a codomain operation. The domain and
codomain axioms alone do not imply that Sd = Sr , let alone the compatibility properties

d(r(x)) = r(x), r(d(x)) = d(x), (6.1.6)

for every x in S. Indeed, consider the domain and range semiring S = ({a},+, 0, ·, 1, d , r)
with addition defined by 0 < a < 1, multiplication by a2 = a, domain by d a = 1 and
codomain by r a = a. We have Sd = {0, 1} 6= {0, a, 1} = Sr and d (r a) = 1 6= a = r a.
The identity r ◦ d = d fails in the opposite semiring. For this reason, we considering
semirings equipped with both a domain and a codomain operation, we impose this
compatibility.

A modal semiring S [29] is a domain semiring that is also a codomain semiring, and
which satisfies the compatibility properties (6.1.6). Boolean domain semirings that are
also Boolean codomain semirings are called Boolean modal semirings.

In contrast to the non-Boolean case, maximality of Sd and Sr = {x ∈ S | r(x) = x}
as Boolean subalgebras between 0 and 1 forces the domain and range algebra of S to
coincide, so that the extra axioms (6.1.6) are unnecessary.

6.1.7. Theorem ([17]). In every Boolean modal semiring the compatibility proper-
ties (6.1.6) hold.

Proof. Let S be a Boolean modal semiring and x in S. Then

d(r(x)) = (ar(x) + r(x))d(r(x))

= ar(x)d(r(x)) + r(x)d(r(x))(ar(x) + r(x))

= 0 + r(x)d(r(x))ar(x) + r(x)d(r(x))r(x)

= 0 + r(x)r(x) = r(x),

proving the first equality in (6.1.6). In the third step, ar(x)d(r(x)) = 0 because
ar(x)r(x) = 0 and yz = 0 ⇔ yd(z) = 0 hold in any Boolean modal semiring. In
the fourth step, r(x)d(r(x))ar(x) = 0 because d(r(x)) ≤ 1 and again ar(x)r(x) = 0.
Moreover, r(x)d(r(x))r(x) = r(x)r(x) because d(y)y = y holds in any modal semiring.
The proof of the second compatibility property in (6.1.6) follows by opposition.

In Boolean modal semirings, d(x) = x therefore implies r(x) = r(d(x)) = d(x) = x, while
r(x) = x implies d(x) = x by opposition. This forces that Sd = Sr , as desired.

6.1.8. Modal Operators. In our algebraic approach to higher dimensional rewriting,
modal operators are important for relating sets of higher-dimensional cells to their sets
of lower-dimensional source and target cells, see (9.1.11), and thus for expressing the
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forall/exists properties defining fillers and the pasting conditions needed for proofs in
higher dimensional rewriting.

As recalled in Section 6.1.21, in the relational model of ARS, given a binary relation R
on a set X, we write |R〉P to indicate the set of all elements of the underlying set from
which the set P can be reached following the relation R. We similarly write 〈R|P to
denote the set of all elements of X that can be reached from P following R. Finally, |R]P
indicates the set from which we must reach the set P following R and [R|P indicates
the set that we must reach from P following R. This is consistent with the standard
Kripke semantics of forward and backward modal operators in modal and, in particular,
dynamic logics. Similar intuitions underlie the path model of modal Kleene algebra, and
these generalise to the notions of higher paths and their relations expressed in the filler
properties and pasting conditions of higher dimensional rewriting. These explanations
motivate the following algebraic definitions of modal operators in modal semirings.

Let (S,+, ·, 0, 1, d , r) be a modal semiring. For x ∈ S and p ∈ Sd, we define the modal
diamond operators:

|x〉p = d(xp), 〈x|p = r(px). (6.1.9)

When S is a Boolean modal semiring, we additionally define modal box operators:

|x]p = ¬|x〉(¬p), [x|p = ¬〈x|(¬p). (6.1.10)

Beyond the intuitions given, these are modal operators in the sense of Jónsson and
Tarski’s Boolean algebras with operators [79] because the following identities hold:

|x〉(p+ q) = |x〉p+ |x〉q, |x〉0 = 0, 〈x|(p+ q) = 〈x|p+ 〈x|q, 〈x|0 = 0,

and dually

|x](pq) = |x]p+ |x]q, |x]1 = 1, [x|(pq) = [x|p+ [x|q, [x|1 = 1.

It is easy to see that |−〉 and 〈−|, as well as |−] and [−| are related by opposition. In a
(Boolean) modal Kleene algebra, following Jónsson and Tarski, this can be expressed by
the conjugation laws

|x〉p · q = 0⇔ p · 〈x|q = 0 and |x]p+ q = 1⇔ p+ [x|q = 1.

In the relational model, it can be expressed explicitly using relational converse.

In a Boolean modal semiring, boxes and diamonds are related by De Morgan duality by
their definition (6.1.10) and additionally by

|x〉p = ¬|x](¬p) and 〈x|p = ¬[x|(¬p). (6.1.11)

Finally, boxes and diamonds are adjoints in Galois connections:

|x〉p ≤ q ⇔ p ≤ [x|q and 〈x|p ≤ q ⇔ p ≤ |x]q. (6.1.12)

As a consequence, diamonds preserve all existing sups in S, whereas boxes reverse all
existing infs to sups, and all modal operators are order preserving. Finally, we mention
the properties |xy〉 = |x〉 ◦ |y〉, 〈xy| = 〈y| ◦ 〈x|, |xy] = |x] ◦ |y] and [xy| = [y| ◦ [x|.
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6.1.13. Modal Kleene algebras. A Kleene algebra is a dioid K equipped with an
operation (−)∗ : K → K called Kleene star, satisfying the following axioms. For all
x, y, z ∈ K,

i) (unfold axioms) 1 + xx∗ ≤ x∗ and 1 + x∗x ≤ x∗,

ii) (induction axioms) z + xy ≤ y ⇒ x∗z ≤ y and z + yx ≤ y ⇒ zx∗ ≤ y.

Note that the axioms on the left are the opposites of those on the right, in the sense that
the order of multiplication has been reversed.

6.1.14. Remark. We take a moment here to explain the intuitions underlying the
above axioms. The Kleene star models a finite iteration or repetition of an element x as a
least fixpoint. The first unfold axiom, for instance, states that iterating x either amounts
to doing nothing, that is, doing 1, or doing x once and then continuing the iteration.
Yet while possibly infinite iterations would satisfy such unfold laws, too, the induction
laws filter out the least fixpoints to the corresponding pre-fixpoint equations. A more
detailed explanation of the induction laws as fixpoints can be found in the literature, see
for example [27]. The Kleene star models the reflexive-transitive closure of a relation in
the relational model and the repetitive composition of paths in a given set of paths in
the path model.

Useful consequences of Axioms i) and ii) include the following identities for all x, y ∈ K,
and i ∈ N,

xi ≤ x∗ x∗x∗ = x∗ x∗∗ = x∗ x(yx)∗ = (xy)x∗ (x+ y)∗ = x∗(yx∗)∗ = (x∗y∗)∗,

where xi denotes the i-fold multiplication of x with itself, as well as the quasi-identities

x ≤ 1⇒ x∗ = 1 x ≤ y ⇒ x∗ ≤ y∗ xz ≤ zy ⇒ x∗z ≤ zy∗ zx ≤ yz ⇒ zx∗ ≤ y∗z.

The Kleene plus is the operation (−)+ : K → K defined by x+ = xx∗. It corresponds to
the transitive closure in the relational model.

The notions of domain and codomain extend to Kleene algebras without having to
add any further axioms describing the interaction of the structures. We thus define a
(Boolean) modal Kleene algebra as a Kleene algebra whose underlying dioid is a (Boolean)
modal semiring.

6.1.15. The algebra of modal operators. In a Boolean modal semiring S, the
modal operators obtained via the domain and codomain operations form a Boolean
algebra in their own right, denoted by [〈S〉]; this is accomplished by point-wise lifting
of the operations in the Boolean algebra Sd. For maps f, g : Sd → Sd, called predicate
transformers, we define

f ≤ g ⇐⇒ ∀p ∈ B f(p) ≤ g(p),

(f + g)(p) := f(p) + g(p),

(f ∩ g)(p) := f(p)g(p),

(¬f)(p) := ¬f(p),
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for all p ∈ Sd, where we recall that the multiplication f(p)g(p) is the meet of f(p) and
g(p) in B; for the composition of such operators, we will write f ◦ g(p) = f(g(p)). This
defines the algebra of predicate transformers PT (Sd).

Furthermore, the Galois connections between diamonds and boxes lift to the operator
level; for all predicate transformers f, g, and x ∈ S,

|x〉f ≤ g ⇐⇒ f ≤ [x|g, 〈x|f ≤ g ⇐⇒ f ≤ |x]g

In the case of an MKA K, the unfold and induction laws are also lifted to operators
associated to elements:

|1〉+ |x〉|x∗〉 = |x∗〉, |1〉+ |x∗〉|x〉 = |x∗〉, (6.1.1)
|y〉+ |x〉|z〉 ≤ |z〉 ⇒ |x∗〉|y〉 ≤ |z〉, (6.1.2)

|x〉p+ q ≤ p⇒ |x∗〉q ≤ p. (6.1.3)

6.1.16. Remark. Recall that a function between f between lattices is universally
disjunctive (resp. universally conjunctive) if f commutes with arbitrary joins (resp. meets),
ie suprema (resp. infima). A folklore result from lattice theory states that a function
between lattices is universally disjunctive (resp. universally conjunctive) if, and only if,
it is a lower (resp. upper) adjoint. The fact that diamonds and boxes are adjoint thus
implies that diamonds (resp. boxes) commute with all existing suprema (resp. infima).

Furthermore, since the Galois connection lifts to the operator algebra, we know that
composition of diamonds is universally disjunctive in both arguments. Finally, note
that by additivity of domain and codomain, we also have that the mapping sending an
element x ∈ K to the corresponding forward or backward diamond (resp. box) is isotone
(resp. antitone) from K to [〈K〉].

6.1.17. Converse.. Here we introduce a notion of converse in the setting of modal
Kleene algebras. In fact, we consider two different axiomatisations of converse. The first
appears in [7] and constitutes the axiomatisation of Kleene algebra with converse found
in [10]. The second is inspired by the properties of the path model, and turn out to be
similar to concepts present in the theory of inverse semigroups, see for example [85].

A Kleene algebra with converse is a Kleene algebra K equipped with an involution
(−) : K → K, called converse or converse operation. This map must satisfy the following
axioms for all x, y ∈ K:

(x+ y) = x+ y, (x · y) = y · x, (x∗) = (x)∗, (x) = x, (6.1.18)

In words, a converse is an additive involution which is contravariant with respect to
multiplication and commutes with the Kleene star. To constitute a converse, such
an involution must satisfy an additional axiom. We provide two notions of converse
corresponding to two different additional axioms.
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The first states that for all x ∈ K,

x ≤ xxx. (6.1.19)

This axiomatisation is found in [7], but also in [10]. It is independent of the notion of
domain, i.e. it allows a dioid or Kleene algebra without a domain operation to be equipped
with a notion of converse. A converse satisfying axioms (6.1.18) and the additional axiom
(6.1.19) will be called a Gelfand converse. A similar axiom is found in the theory of
inverse semigroups where inverses satisfy s = ss−1s, see for example [85].

The second axiomatisation relates conversion to the domain operation. Indeed, it states
that converse is contracts onto the domain in the sense that

d(x) ≤ xx, (6.1.20)

must hold for all x ∈ K. Again in [85], we have a similar notion, excepting that in
that case, the notion of domain and codomain are defined from the inverse operation,
i.e. d(s) := ss−1 and r(x) := s−1s. We will call such a converse operation, i.e. one
satisfying axioms (6.1.18) and (6.1.20), a contracting converse.

Note that the first axiom is a consequence of the second. Indeed, suppose that − is a
contracting converse. Multiplying both sides of (6.1.20) on the right by x, we have

d(x)x = xxx.

As explained in Section 6.1.3, we have d(x)x = x as a consequence of domain axioms,
so we recover (6.1.19). We observe that in both cases a converse operation exchanges
domain and codomain, i.e. d(x) = r(x) and r(x) = d(x). This means that conversion
also switches the direction of boxes and diamonds, i.e. |x〉 = 〈x| and |x] = [x|. As a
consequence, and using (6.1.12), we have the Galois connections

〈x|p ≤ q ⇔ p ≤ [x|q and |x〉p ≤ q ⇐⇒ p ≤ |x]q.

Furthermore, conversion is the identity on the domain subalgebra, i.e. for p ∈ Kd,
p = p.

Finally, we may also augment Boolean MKA with converse operations. A (Boolean)
MKA with converse, Gelfand or contracting, is a (Boolean) MKA equipped with such a
converse operation.

6.1.21. Example: relation Kleene algebras. Here we put aforementioned intu-
itions on solid foundations. Binary relations form perhaps the most important model
of modal Kleene algebras in program verification applications. The relational model
of plain Kleene algebra has been the starting point for Kleene-algebraic proofs of the
Church-Rosser theorem of abstract rewriting [109], that of modal Kleene algebra has
motivated the Kleene-algebraic proof of Newman’s lemma [28].

For any set X, the structure

(P(X ×X),∪ , ∅X , ; , IdX , (−)∗)
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forms a Kleene algebra, the full relation Kleene algebra over X. This is the algebra Rel(X)
described in Section 6.1.21. We recall that the operation ; is relational composition
defined by (a, b) ∈ R ;S if, and only if, (a, c) ∈ R and (c, b) ∈ S, for some c ∈ X. The
relation IdX = {(a, a) | a ∈ X} is the identity relation on X and (−)∗ is the reflexive
transitive closure operation defined, for R0 = IdX and Ri+1 = R ;Ri, by

R∗ =
⋃
i∈N

Ri.

The subidentity relations below IdX form the greatest Boolean subalgebra between ∅X
and IdX , which is isomorphic to the power set algebra P(X). Every subalgebra of a full
relation Kleene algebra is a relation Kleene algebra.

The full relation Kleene algebra over X extends to a full relation Boolean modal Kleene
algebra over X by defining, as expected,

d(R) = {(a, a) | ∃b ∈ X. (a, b) ∈ R} and r(R) = {(a, a) | ∃b. (b, a) ∈ R}.

The domain algebra Rel(X)d equals the Boolean algebra of subidentity relations.

The antidomain and anticodomain maps are then given by relative complementation
ad(R) = IdX \ d(R) and ar(R) = IdX \ r(R) within the domain algebra. Finally, it is
straightforward to check that the algebraic definitions of boxes and diamonds expand to
their standard relational Kripke semantics:

|R〉P = {(a, a) | ∃b ∈ X. (a, b) ∈ R ∧ (b, b) ∈ P},
|R]P = {(a, a) | ∀b ∈ X. (a, b) ∈ R⇒ (b, b) ∈ P},

and likewise for the backward modalities. This requires swapping (a, b) to (b, a) in the
above expressions, which amounts to taking relational converse.

6.1.22. Example: path Kleene algebras. The path model of modal Kleene
algebras is a stepping stone towards polygraph models of higher Kleene algebras. Instead
of a 1-polygraph, we could speak of a directed graph or quiver. So let P ∗ be the free
1-category generated by the 1-polygraph P = (P0, P1). Its elements are paths in P to
which we assign source and target maps s0 and t0 as well as a path composition ?0 as a
pullback of s0 and t0 in the standard way. Then (P(P ∗1 ),∪, ∅,�,1, (−)∗) forms a Kleene
algebra, the full path (Kleene) algebra K(P ) over P . Here, composition is defined as a
complex product

φ� ψ = { u ?0 v | u ∈ φ ∧ v ∈ ψ ∧ t0(u) = s0(v) }

for any φ, ψ ∈ P(P ∗1 ), and 1 is the set of all identity arrows, or paths of length zero, of
P . The Kleene star is defined as

φ∗ =
⋃
i∈N

φi

where φ0 = 1 and φi+1 = φ� φi. It models the repetitive composition of the paths in φ
mentioned before. In particular, notice that P1 is an element of P(P ∗1 ) Every subalgebra
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of the full path Kleene algebra over P is a path Kleene algebra. As in the case of relational
Kleene algebras, the set of all subidentities (subsets of 1), the set of sets of identity
arrows, forms a Boolean subalgebra.

The full path algebra over P extends to a full path Boolean modal Kleene algebra over P
by defining

d(φ) = {1s(u) | u ∈ φ} and r(φ) = {1t(u) | u ∈ φ}

where 1x denotes the identity arrow on an object x ∈ P0. The domain algebra induced
equals the Boolean algebra of subidentities. The antidomain and anticodomain maps are
therefore given again by relative complementation ad(φ) = 1 \ d(φ) and ar(φ) = 1 \ r(φ)
within the domain algebra. Finally, unfolding definitions shows that

|φ〉p = {1s(u) | u ∈ φ ∧ t(u) ∈ p} and |φ]p = {1s(u) | u ∈ φ⇒ t(u) ∈ p},

where p ⊆ 1 is some set of identity arrows. Reachability along a relation has now been
replaced by reachability along a set of paths. Similar expressions for backward modalities
can be obtained again by swapping source and target maps in the right places. As a
final remark, note that |P1〉 corresponds to the (forward) modal diamond operator for
the underlying ARS →P associated to φ.

The relational model and the path model are very similar. In fact the relational model
can be obtained from the path model by applying a suitable homomorphism of modal
Kleene algebras.

6.2. Abstract rewriting in modal Kleene
algebras

The mechanisms of abstract rewriting may be expressed succinctly in the abstract setting
of Kleene algebra. In Sections 5.1 and 5.2, we recalled the relational and polygraphic
approaches to abstract rewriting theory. The models of modal Kleene algebra above,
(6.1.21) and (6.1.22), show that both of these settings fall under the scope of Kleene
algebra. The rewriting properties described in the following paragraphs correspond to
those introduced in the case of relations or 1-polygraphs when interpreted in the models.
This is made precise in Section 9.5.

6.2.1. Termination and normal forms in MKA. We recall from [28] definitions
and results concerning termination and normal forms expressed in MKA.

i) An element x ∈ K terminates, or is Noetherian, provided that for all p ∈ Kd the
implication

p ≤ |x〉p⇒ p = 0,

holds. Recall that the definition of termination for ARS given in Section 5.1.4
is precisely this condition in the relational model of Kleene algebra. The set of
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Noetherian elements of K is denoted by N (K). The Galois connections (6.1.12)
yield the following equivalent characterisation of termination:

∀p ∈ Kd, |x]p ≤ p⇒ p = 1. (6.2.2)

ii) The exhaustion of an element x ∈ K, denoted by exh(x), is defined by

exh(x) := x∗ · ¬d(x). (6.2.3)

iii) The normal forms element of x ∈ K, denoted by NF(x), is defined by

NF(x) := r(exh(x)) ∈ Kd. (6.2.4)

We will show in the following subsection how these notions correspond to those introduced
in Sections 5.1 and 5.2 when instantiated in the corresponding models. Before finishing
this subsection, we recall a lemma stating that if x is a terminating element of K, then a
normal form may be reached from any element.

6.2.5. Lemma ([28]). Let K be a Boolean modal Kleene algebra and x ∈ K. If x
terminates, then d(exh(x)) = 1.

6.2.6. Confluence properties in MKA. Confluence properties are captured in
MKA by semi-commutation properties. We distinguish two cases of semi-commutation:
(regular) semi-commutation and modal semi-commutation, the latter being less fine.
Given x, y ∈ K, we say that the ordered pair (x, y)

i) semi-commutes locally if xy ≤ y∗x∗,

ii) semi-commutes if x∗y∗ ≤ y∗x∗, and

iii) has the Church-Rosser property if (x+ y)∗ ≤ y∗x∗.

Rather than expressing confluence and Church-Rosser properties as we have seen thus
far, these properties can be thought of as expressing a reordering of calculation steps.
Indeed, without a notion of converse, nor using the notion of modalities, see below, we
cannot express the notion of branching or confluence as seen in abstract rewriting.

As examples, the semi-commutation of the pair (x, y) expresses that any elements related
by an iteration of x-steps followed by and iteration of y-steps, may also be related by an
iteration of y-steps followed by an iteration of x-steps. In this sense, the Church-Rosser
property for MKA states a re-ordering property: given elements related by steps in x
and y in any order, we may relate them using y-steps followed by x-steps.

To relate these notions to diagrammatic intuitions, we will represent these situations by
the following diagrams

·@@x y
��

·

y∗ ��

·@@
x∗·

·@@x∗ y∗

��

·

y∗ ��

·@@
x∗·

· oo
(x+ y)∗

//

y∗ ""

·<<

x∗·
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where, from left to right, we have represented the local semi-commutation, the semi-
commutation, and the Church-Rosser property of the pair (x, y).

In the presence of a notion of converse, Gelfand or contracting, we may describe confluence
and Church-Rosser properties of a single element. These correspond to their homonyms
in the context of ARS. Let (−) be a converse operation on K. We say that an element
x ∈ K is (locally) confluent (resp. Church-Rosser) if the pair (x, x) semi-commutes
(resp. has the Church-Rosser property). Finally, we say that x is convergent if it is both
terminating and confluent.

Now we turn to modal semi-commutation properties. Given x, y ∈ K, we say that the
ordered pair (x, y)

i) modally semi-commutes locally if 〈x||y〉 ≤ |y∗〉〈x∗|,

ii) modally semi-commutes if 〈x∗||y∗〉 ≤ |y∗〉〈x∗|, and

iii) has the modal Church-Rosser property if |(x+ y)∗〉 ≤ |y∗〉〈x∗|.

Notice that in the presence of a converse operation, these properties are consequences
of the corresponding (regular) properties listed above. Indeed, applying the diamond
operator to both sides of the above inequalities in the case of the ordered pair (x, y), we
obtain the corresponding modal property for the pair (x, y). In this way, using forward
and backward diamonds models a converse operation under the modality. For this reason,
we represent these situations graphically by

·
x
��

y
��

·

y∗ ��

·

x∗��·

·
x∗
��

y∗

��

·

y∗ ��

·

x∗��·

· oo
(x+ y)∗

//

y∗ ""

·

x∗||·

As above, we will say that an element x ∈ K is (locally) modally confluent (resp. modally
Church-Rosser) if the pair (x, x) modally semi-commutes (resp. has the modal Church-
Rosser property). Finally, we say that x is modally convergent if it is both terminating
and modally confluent.

As in the case of ARS and 1-polygraphs, we have a result relating confluence to unicity
of normal forms.

6.2.7. Lemma ([28]). Let K be a Boolean modal Kleene algebra and x ∈ K. If x is
(modally) confluent, then exh(x) is deterministic, i.e. 〈exh(x)| |exh(x)〉 ≤ 〈1〉.

6.2.8. Consistency theorem in MKA. Just as in the case of ARS and 1-
polygraphs, we obtain a consistency theorem for elements of an MKA. As usual, we first
provide statements of Newman’s lemma and the Church-Rosser theorem for MKA. The
consistency theorem is a direct consequence.

In the case of Newman’s lemma, we prove the result relative to modal semi-commutation
properties.
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6.2.9. Theorem (Newman’s Lemma [28]). Let (K,B) be a modal Kleene algebra
with Kd a complete Boolean algebra, and let x, y ∈ K such that (x+ y) ∈ N (K).

If (x, y) locally modally semi-commutes, then (x, y) modally commutes.

Proof. We first define a predicate rc(−) which states that x and y modally commute up
to restriction to a domain element p ∈ Kd:

rc(p) ⇐⇒ 〈x∗|〈p〉|y∗〉 ≤ |y∗〉〈x∗|

The operator 〈x∗|〈p〉|y∗〉 sends a domain element q to r(x∗(pd(y∗q))), which, in the
relational intuition, corresponds to the following situations:

u
x∗←− w y∗−→ v,

with v ∈ q, w ∈ p and u in the image of the operator. It thereby corresponds to
branchings of y∗ and x∗ on points of p.

Note that by completeness of Kd, the supremum r := sup{p ∈ Kd | rc(p)} exists.
Furthermore, by Remark 6.1.16, 〈r〉 = sup{〈p〉 | rc(p)}, and since composition of
diamonds is universally disjunctive (i.e. commutes with suprema), we may infer rc(r).

We proceed in two steps; the first is a proof that the induction step predicate, defined
for p ∈ Kd by

Ind(p) ⇐⇒ rc(py) ∧ rc(px)⇒ rc(p),

holds for all p ∈ Kd, where pz := 〈z|p for z ∈ K. The second step shows that the
statement (∀p, Ind(p)) is equivalent to the retraction of r by |a+ b], i.e. that |a+ b]r ≤ r.
By the box characterization of termination (6.2.2), this will conclude the proof, since
then we must have r = 1.

Firstly, note that codomain propagation, i.e.

〈p〉|z〉 = |pz〉 = |pz〉〈pz〉 ≤ |z〉〈pz〉

holds for all p ∈ Kd and z ∈ K since z = zr(z), p, px ≤ 1, and because the domain
operator is isotone. Similarly, 〈z|〈p〉 ≤ 〈pz〉〈z| holds for all p ∈ Kd and z ∈ K.

Next, we use the star unfold law (6.1.1) and the reflexivity of the Kleene star, i.e. 1 ≤ z∗
for z ∈ K, to bound the branchings of y and x at p:

〈x∗|〈p〉|y∗〉 = (〈1|+ 〈x∗|〈x|)〈p〉|y∗〉
= 〈p〉|y∗〉+ 〈x∗|〈x|〈p〉(|1〉+ |y〉|y∗〉)
= 〈x∗|〈x|〈p〉+ 〈x∗|〈x|〈p〉|y〉|y∗〉+ 〈p〉|y∗〉
≤ 〈x∗|〈p〉+ 〈x∗|〈x|〈p〉|y〉|y∗〉+ 〈p〉|y∗〉.

In this way we split iterations of x and y into single steps followed by iteration. We have
〈x∗|〈p〉, 〈p〉|y∗〉 ≤ |y∗〉〈x∗|, again by reflexivity, so we only need to bound the middle
summand to conclude the first part of the proof.
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Bounding the middle summand is accomplished by the following calculation, in which we
use the hypothesis that (x, y) commutes locally, codomain propagation, rc(px) followed
by idempotence of multiplying the Kleene star of a given element, i.e. x∗x∗ = x∗, and
then the same for rc(py). The calculation is illustrated on the right in terms of the
diagrammatic proof:

〈x∗|〈x|〈p〉|y〉|y∗〉 ≤ 〈x∗|〈px〉〈x||y〉〈py〉|y∗〉
≤ 〈x∗|〈px〉|y∗〉〈x∗|〈py〉|y∗〉
≤ |y∗〉〈x∗|〈x∗|〈py〉|y∗〉
≤ |y∗〉〈x∗|〈py〉|y∗〉
≤ |y∗〉|y∗〉〈x∗|
≤ |y∗〉〈x∗|

·
b

yy

a

%%
lc·

b∗

yy

a∗

%%rc(pb)

·
b∗

yy

a∗

%%·
a∗

%%

·
b∗

yy

rc(pa)

·

b∗

yy

·

a∗
%%

·

·

We have thus proved (∀p ∈ Kd, Ind(p)), concluding the first part of the proof.

To finish, we show that the above statement is equivalent to retraction of r by |x+ y].
Since the set {p ∈ Kd | rc(p)} is downward closed and by definition of suprema, we have
p ≤ r ⇐⇒ rc(p). This extends to the induction hypothesis:

∀p (rc(py) ∧ rc(px)⇒ rc(p)) ⇐⇒ ∀p ( (py = 〈y|p ≤ r ) ∧ ( px = 〈x|p ≤ r )⇒ p ≤ r)
⇐⇒ ∀p ( 〈y + x|p ≤ r ⇒ p ≤ r),

where the second equivalence is by definition of meet and by additivity of the diamond
operator. By the Galois connection, the above is equivalent to

∀p ( p ≤ |x+ y]r ⇒ p ≤ r),

which, by definition of suprema, is equivalent to |x + y]r ≤ r, thus concluding the
proof. Indeed, by termination, this implies that r = 1, meaning that x and y modally
semi-commute.

As illustrated by the proof, the reason that we only have a modal version of this theorem
in the setting of MKA is for the use of abstract Noetherian induction, the notion of
termination being modally defined.

For the Church-Rosser theorem, we have results both in terms of regular and modal
semi-commutation properties:

6.2.10. Theorem ((modal) Church-Rosser for MKA [109]). Let K be a (modal)
Kleene algebra and x, y ∈ K. Then (x, y) (modally) semi-commutes if, and only if, (x, y)
has the (modal) Church-Rosser property.

As a direct consequence of the above, we obtain a modal consistency theorem for
MKA.
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6.2.11. Theorem (Consistency for MKA). Let K be a modal Kleene algebra and
x, y ∈ K such that (x+ y) ∈ N (K) and (x, y) locally modally semi-commute. Then (x, y)
has the Church-Rosser property.

Applying the above theorems to a single element of K, we recover the corresponding
theorems for ARS, see Section 9.5
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Chapter 7.
Coherence via rewriting

In this third preliminary chapter, we recall the notion of coherence. This concept is
central to this thesis. In a higher categorical structure, certain algebraic properties,
e.g. associativity of composition, may only hold up to the existence of higher-dimensional
morphisms. Given a collection of such higher morphisms, coherence is the requirement
that the whole structure is contractible, i.e. all parallel morphisms are linked by higher
morphisms. A coherence theorem states that, given a (generating) collection of such
morphisms, coherence is satisfied.

The use of rewriting in questions of coherence was initiated by Squier in [104]. The main
point is to compute extensions of an algebraic structure by homotopy generators which
take the relations amongst the rewriting paths into account. This rewriting method
for coherence was applied to solve coherence problems in algebra [25, 46, 69], and for
monoidal categories [66]. There, the higher cells constitute a truncations of a cofibrant
replacement of the monoid presented by the SRS [46, 67]. A general description of higher
dimensional rewriting paradigms may be found in [1].

While coherence proofs by rewriting are similar to consistency proofs, the key difference
is that the homotopy generators, although encoded in the familiar structure of higher
polygraphs, are not considered as a rewriting system, but as an equivalence relation on
(higher) rewriting paths.

We start in Section 7.1 by introducing the structures used to describe coherence of ARS,
namely (2, 0)-polygraphs, and define homotopy bases and coherent rewriting. We present
different versions of Newman’s lemma and the Church-Rosser theorem, first proving
coherent versions of the classical theorems, then normalising versions thereof. We then
prove the coherence theorem for ARS using two different techniques, first without and then
with the notion of strategy. The former approach is an original contribution, achieving
a proof of the coherence theorem using the aforementioned classical results, while the
latter involves strategic versions thereof. Sections 7.2 and 7.3 extend these notions to
the string rewriting and higher dimensional rewriting paradigms, respectively.

This chapter presents no explicitly new material, although the first proof of Theo-
rem 7.1.16, which does not use the notion of strategy, is not in the literature in polygraphic
language. Results from this section may be found in [65, 68].

109
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7.1. Coherence for abstract rewriting
systems

We first treat the case of 1-polygraphs. In Section 5.3, we defined 2-polygraphs as cellular
extensions of the free category generated by a 1-polygraph as a means of describing
rewriting systems on algebraic structures, i.e. string rewriting systems. Here we will
again consider 2-dimensional structures, but with a different approach, defining coherence
of a 1-polygraph with respect to a cellular extension of the free groupoid it generates.
In this sense, we study the coherence properties of the equivalence generated by the
1-polygraph in question.

7.1.1. (2, 0)-polygraphs. Let P = (P0, P1) be a 1-polygraph, and consider a cellular
extension Γ of the free groupoid P>. In the terminology of Section 5.4.11, we say that
the triple (P0, P1,Γ) is a (2, 0)-polygraph. This generates the free 2-groupoid P>(Γ),
also denoted Γ> to simplify notation, in which 0-cells are elements of P0, 1-cells are
zig-zag sequences of P i.e. elements of P>1 , and 2-cells are formal composites of elements
of Γ and their formal inverses. As defined in Section 5.3, this 2-groupoid is the quotient
2-category

Γ> = P>[Γ,Γ−]/Inv(Γ).

A (2, 0) polygraph (P0, P1,Γ) presents a 1-groupoid P>, given by the quotient P>/Γ.

7.1.2. Homotopy bases and coherence. Let (P0, P1,Γ) be a (2, 0)-polygraph.
We say that Γ is a homotopy basis if for all parallel zig-zag sequences f and g in P ,
i.e. those with common source and target, there exists a 2-cell α in P>(Γ) such that
s1(α) = f and t1(α) = g. Symbolically and diagrammatically stated:

∀f, g ∈ P>1 ,

{
s0(f) = s0(g)

t0(f) = t0(g)
∃α ∈ P>(Γ)2, α : f ⇒ g. · yy

f

%%
ee

g

99⇓ α ·

Note that this is equivalent to saying that the the 1-groupoid presented by (P0, P1,Γ) is
acyclic. A homotopy basis is also called a coherent extension of P .

7.1.3. Coherent abstract rewriting. We now define rewriting properties of an
ARS P = (P0, P1) in terms of a cellular extension Γ of P>.

i) We say that a branching (resp. local branching) (f, g) of P is Γ-confluent provided
that there exists a confluence (f ′, g′) and a 2-cell α ∈ Γ> such that α : ff ′ ⇒ gg′,
as in the following diagram:

xf
||

g
""

x1

f ′
  

x2

g′
~~

x′

α %9
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We say that P is Γ-confluent (resp. locally Γ-confluent) if every branching (resp. lo-
cal confluence) is Γ-confluent.

ii) We say that a branching (f, g) of P is Γ-normalised if it is Γ-confluent and the
target of the confluence (f ′, g′) is a normal form, as pictured in the following
diagram

xf
}}

g
!!

x1

f ′
  

x2

g′
~~

x̂

α %9

where x̂ is a normal form of P . We say that P is normally Γ-confluent when every
branching of P is Γ-normalised.

iii) A zig-zag sequence h : u↔ v of P is Γ-confluent provided that there exist rewriting
sequences k and k′ of P and a 2-cell α ∈ Γ> such that α : k ⇒ hk′, as in the
following diagram:

u oo
h

//

k ##

v

k′{{

u′
α
&:

We say that P is Γ-Church-Rosser if every zig-zag sequence of P is Γ-confluent.

iv) A zig-zag sequence h : u ↔ v of P is Γ-normalised provided that there exist
normalising rewriting sequences k and k′ of P and a 2-cell α ∈ Γ> as in the
following diagram:

u oo
h

//

k %%

v

k′yy

û = v̂

α
&:

We say that P is normally Γ-Church-Rosser if every zig-zag sequence of P is
Γ-normalised.

v) Two parallel zig-zag sequences f and g are Γ-congruent if there exists a 2-cell
α ∈ Γ> such that α : f ⇒ g. Γ is then a homotopy basis when all parallel zig-zags
are Γ-congruent.

We obtain coherent versions of the fundamental theorems of abstract rewriting, recalled
in Section 5.2.

7.1.4. Theorem (Coherent Church-Rosser theorem). Let P be a 1-polygraph, and
Γ be a cellular extension of P>. Then P is Γ-confluent if, and only if, P is Γ-Church-
Rosser.

Proof. Let h : u↔ v be a zig-zag sequence, i.e. a 1-cell of P>. We proceed by induction
on the length of h. If h is an identity, that is if u = v and h = 1u, the identity 2-cell
11u suffices to prove Γ-confluence. Suppose now that h is of length k ≥ 1. We write
h = h1 ?0 h2, where h1 : u ↔ w is a zig-zag sequence of length (k − 1) and, without
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loss of generality, h2 is either a rewriting step or the formal inverse of one, i.e. either
h2 : w → v or h−2 : v → w. In the first case, we obtain a diagram of the form

u oo
h1

//

k1
��

w
h2
//

k2

~~

v

k′
��

u′
k
// v′

α %9 β %9
(7.1.5)

where α is obtained by the induction hypothesis and β by the hypothesis of Γ-confluence.
The composite (α ?0 k) ?1 (h1 ?0 β) makes the zig-zag h Γ-confluent.

In the second case, we obtain a diagram of the form

u oo
h1

//

k1
��

w
h−2

//

k2

~~

v
BB

k−2 h
−
2u′

α %9
(7.1.6)

The 2-cell αh−2 k
−
2 makes the zig-zag h Γ-confluent.

7.1.7. Theorem (Coherent Newman lemma). Let P be a terminating 1-polygraph,
and Γ a cellular extension of P>. If P is locally Γ-confluent, then P is Γ-confluent.

Proof. Let u be a 0-cell of P . We proceed by Noetherian induction, proving that every
branching with source u is Γ-confluent. If u is a normal form, the only branchings on u
are of the form (1u, 1u), so the identity 2-cell 11u suffices to prove Γ-confluence.

For the induction step, suppose now that u is reducible and that Γ is a confluence filler
for any branching with source u′ such that there exists a reduction sequence u → u′,
and let (f, g) be a branching of source u. If f or g is an identity, the identity 1g or 1f ,
respectively, suffices. If not, we write f = f1 ?0 f2 and g = g1 ?0 g2 where f1, g1 are
rewriting steps and f2, g2 are rewriting sequences. By the local Γ-confluence hypothesis,
we obtain a 2-cell alpha as in the diagram (7.1.8) below. By the induction hypothesis
on u1 and (f2, f

′
1), we obtain the 2-cell β, and subsequently applying the induction

hypothesis to v1 and (g′1h, g2), we obtain the 2-cell γ as pictured below.
u

f1

||

g1

!!

u1

f ′1
  

f2

~~

v1

g′1
~~

g2

  

u2

f ′2 ��

u′

h
��

v2

g′2
��

u′2

k ��

u′′

α %9

β %9
γ %9 (7.1.8)
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Then the following composite

δ = (((f1 ?0 β) ?1 (α ?0 h)) ?0 k) ?1 (g1 ?0 γ) (7.1.9)

is a 2-cell in P ∗(Γ) with source f ?0 (f ′2 ?0 k) and target g ?0 g
′
2, proving the result.

Note that for Γ = Sph(P ∗), Theorems 7.1.4 and 7.1.7 correspond to Newman’s lemma [92]
and the Church-Rosser theorem [22], recalled in Section 5.4 as Corollaries 5.4.14 and 5.4.15,
see also [76].

Note that as corollaries, we obtain normalising versions of Theorems 7.1.4 and 7.1.7:

7.1.10. Corollary (Coherent normalising Church-Rosser theorem). Let P be a
1-polygraph, and Γ a cellular extension of P>. Then P is normally Γ-confluent, if, and
only if, P is normally Γ-Church-Rosser.

Proof. The proof is identical to the proof of Theorem 7.1.4, but with normalising
confluences.

7.1.11. Corollary (Coherent normalising Newman lemma). Let P be a termi-
nating 1-polygraph, and Γ a cellular extension of P>. If P is locally Γ-confluent, then P
is Γ-normalising.

Proof. The proof is identical to the proof of Theorem 7.1.7, except for that when we
choose the confluences (f ′2, h) and (k, g′2), we choose normalising reductions. Note that
in this case, k is an identity and u′2 = u′′ = û. More precisely, given a 0-cell u, we prove
by Noetherian induction that any branching with source u is Γ-normalised.

7.1.12. Family of generating confluences. Let P be a locally confluent 1-
polygraph. A family of generating confluences for P is a cellular extension Γ consisting
of a 2-cell αf,g for every local branching (f, g) and the choice of a confluence (f ′, g′) as
in the following diagram:

xf
||

g
""

x1

f ′
  

x2

g′
~~

x′

αf,g %9

In the next subsection, we will see that such a cellular extension is a coherent extension
when P is convergent.

7.1.13. Squier’s theorem for ARS. Coherence for a convergent 1-polygraph with
respect to a family of generating confluences is proved in two steps: first, we show that
for any parallel normalising reduction sequences (f, g), there exists a 2-cell α : f ⇒ g in
Γ>. Second, we apply the Corollary 7.1.10 and 7.1.11 to parallel zig-zags.

The proof of the first step is very similar to that of Corollary 7.1.10, but instead of
quantifying over branchings, we are quantifying over parallel normalising reductions.
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This distinction will be important when we formulate these theorems in higher Kleene
algebras.

7.1.14. Proposition. Let P be a locally confluent, terminating 1-polygraph and Γ a
family of generating confluences. Then for any two normalising reduction sequences
f, g : u→ û, there exists a 2-cell α : f ⇒ g in Γ>.

Proof. This proof is again by Noetherian induction on the source u of f and g. For the
base case, as in the proof of Theorem 7.1.7, it suffices to take the 2-cell 11u .

For the induction step, we suppose that the property holds for normalising reduction
sequences with source u′ such that there exists a reduction sequence u→ u′. Since û is
a normal form, we don’t need to consider the case in which f or g is an identity. We
again write f = f1 ?0 f2 and g = g1 ?0 g2 as in the case of Theorem 7.1.7. By the local
Γ-confluence hypothesis, we obtain a 2-cell α of Γ as in diagram (7.1.15). Applying the
induction hypothesis to the the parallel normalising reductions with source u1 and u2,
we obtain 2-cells β and γ of Γ> as in the below diagram.

u
f1

}}

g1

!!

u1

f ′1
  

f2

!!

u2

g′1
~~

g2

~~

u′

k

��

û

α %9

β %9 γ %9 (7.1.15)

The composite 2-cell (f1β) ?1 (αk) ?1 (g1γ) completes the proof.

This leads to the first proof of the coherence theorem for 1-polygraphs, formulated in [65],
see also [1].

7.1.16. Theorem (Coherence theorem for 1-polygraphs). Let P be a locally con-
fluent, terminating 1-polygraph and Γ a family of generating confluences. Then Γ is a
homotopy basis for P .

We provide two proofs of the theorem. The first is an original proof not using rewriting
strategies, while the second is the more classical polygraphic proof from [65].

Proof. Firstly, by Theorem 7.1.11, we know that P is normally Γ-confluent, and therefore,
by Theorem 7.1.10, it is normally Γ-Church-Rosser. Furthermore, by Proposition 7.1.14,
we know that any two parallel, normalising reduction sequences are Γ-congruent. Given
parallel zig-zag sequences h1, h2 : u↔ v, we may therefore build the following diagram,
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where α1 : k1 ⇒ h1k
′
1 and α2 : k2 ⇒ h2k

′
2:

u
||

h1

""
k1 ))

k2

66̂
u = v̂ v<<

h2

bb

k′2

hh

k′1uu

α1 ';

α2
#7

β2 ��β1�� (7.1.17)

Recall from Section 5.4.7 that whiskering the inverse of β2 by the inverses of its source and
target provide a 2-cell (k′1)−β−2 (k′2)− : (k′1)− ⇒ (k′2)−. Similarly, α−1 (k′1)− : h1 ⇒ k1(k′1)−

and α2(k′2)− : k2(k′2)− ⇒ h2. Therefore, the composite

(α−1 (k′1)−) ?1 (β1 ?0 ((k′1)−β−2 (k′2)−)) ?1 (α2(k′2)−)

is a 2-cell of Γ> with source h1 and target h2, proving that h1 and h2 are Γ-congruent.

7.1.18. Remark. The proofs of Theorems 7.1.4 and 7.1.7 are similar to the consistency
proofs for 1-polygarphs. Indeed, if we forget the 2-dimensional coherence cells and look
only at their 1-dimensional borders in (7.1.25), (7.1.6) and (7.1.8), we obtain precisely
the diagrams used to prove the analogous 1-dimensional consistency results. This shows
that the higher dimensional approach is consistent with the abstract case while providing
several advantages. Notably, since the higher-dimensional cells may be considered as
rewriting systems in their own right, and since the procedures described above work in any
dimension, higher-dimensional rewriting provides a constructive method for calculating
resolutions and cofibrant replacements of algebraic structures [65, 67].

Instead of using Proposition 7.1.14, we can use the notion of rewriting strategy to prove
the above theorem. This has the added advantage that strategies provide a notion of
normal forms for the higher dimensional rewriting system defined by coherence cells.

7.1.19. Sections and strategies. Let P be a 1-polygraph. Recall from Section 5.2.2
that we obtain a quotient set q : P0 → P 0 by identifying 0-cells connected by zig-zag
sequences. Asection of P is a map s : P 0 → P0 such that q ◦ s = idP 0

.

When P is a convergent ARS, we have existence and unicity of normal forms, so the map
x 7→ x̂ is a section of P , which we call the normal forms section.

Given a section s of P , a strategy for P relative to s is a map

σ : P0 −→ P ∗1

x 7−→ σx

which must satisfy the following for all x ∈ P0:

i) σx : x→ s(x),
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ii) σs(x) = 1s(x).

When P is a convergent ARS, we call any strategy for P relative to the normal forms
section a normalisation strategy.

7.1.20. Strategic confluence. We now define notions of Γ-confluence for a 1-
polygraph P with respect to a (normalisation) strategy σ.

i) A branching (f, g) is strategically Γ-confluent provided that there exists a 2-cell α
as in the following diagram:

xf
}}

g
!!

x1

σx1   

x2

σx2~~

x̂

α %9

We say that P is strategically Γ-confluent when all of its branchings are.

ii) A zig-zag sequence h : u↔ v of P is strategically Γ-confluent provided that there
exists a 2-cell α ∈ Γ> as in the following diagram:

u oo
h

//

σu %%

v

σvyy

û = v̂

α
&:

We say that P is strategically Γ-Church-Rosser if every zig-zag sequence of P is
strategically Γ-confluent.

7.1.21. Squier’s theorem with normalisation strategies. Here we prove The-
orem 7.1.16 with a different technique, namely using normalisation strategies. This again
proceeds in two steps: first we prove a version of Newman’s lemma stating that a locally
confluent, terminating ARS equipped with its family of generating confluences is such
that any confluence may be paved toward a confluence in the strategy. The second step
then becomes much simpler, being essentially the Church-Rosser argument.

7.1.22. Proposition (Strategic Newman’s Lemma). Let P be a locally confluent,
terminating 1-polygraph and Γ a family of generating confluences. Then P is strategically
Γ-confluent.

Proof. The proof is essentially that of Theorem 7.1.7, but the Noetherian, induction
hypothesis integrates the strategic confluence.

7.1.23. Proposition (Strategic Church-Rosser). Let P be a locally confluent, ter-
minating 1-polygraph and Γ a family of generating confluences. Then P is strategically
Γ-Church-Rosser.
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Proof. The proof follows the schema of Theorem 7.1.4. However, we provide details since
the use of strategies changes the composite 2-cells slightly. Let h be a zig-zag sequence
in P .

We reason by induction on the length of h. If h is an identity, the confluence (σx, σx) is
paved by the identity 2-cell 1σx . Suppose now that h is of length n ≥ 1. We decompose
h = h1 ?0 h2 where, as in Theorem 7.1.4, h1 is a zig-zag of length (n − 1) and h2 is a
rewriting step or the inverse of a rewriting step. We again treat these two cases separately.
For the first, we pave the diagram as illustrated below:

u oo
h1

//

σu
""

w
h2

//

σw
zz

v

σv
||

û = ŵ ŵ = v̂

α %9 β %9
(7.1.24)

where α is obtained by the induction hypothesis and β is obtained by Proposition P:StratNewmanARS.
The composite α ?1 (h1 ?0 β) makes the zig-zag h Γ-confluent.

In the second case, we obtain a diagram of the form

u oo
h1

//

σu
""

w
h−2

//

σw
zz

v

σv
||

û = ŵ ŵ = v̂

α %9 β %9
(7.1.25)

The 2-cell α is again inherited from the induction hypothesis. For the 2-cell β, note
that we obtain a 2-cell γ : h2σw ⇒ σv by applying Proposition 7.1.22 to the branching
(h2, σv). We obtain β by whiskering:

β = h−2 γ : σw =⇒ h−2 σv.

Then β is a 2-cell whose 1-source is that of α, and whose 1-target is h−2 σv. The composite
2-cell α ?1 (h1β) concludes the proof.

Now we can provide an alternate proof of Theorem 7.1.16.

Proof. By Proposition 7.1.23, we know that P is strategically Γ-Church-Rosser. We
thereby obtain the 2-cells α1 and α2 illustrated below:

v
σv

((

1v

((
u
��

h1
00

]]

h2
..

σu // û = v̂ σ−v
// v

v

σv

66

1v

66

α1

EY

α2
��

(7.1.26)

The composite 2-cell (α1σ
−
v )− ?1 (α2σ

−
v ) provides the conclusion.
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7.2. Coherence for string rewriting systems

Here we provide a brief description of the coherent critical branching lemma in the
language of 3-polygraphs.

We define the notion of a homotopy basis of a 2-polygraph P in a similar fashion to
the one-dimensional case. This consists of a cellular extension P3 of P ∗1 (P2) such that
the quotient 2-category P ∗1 (P2)/P3 is acyclic, i.e. every 2-sphere of P ∗1 (P2)/P3 is of
the form (α, α) where α is a 2-cell of P ∗1 (P2). For example, the set of all 2-spheres of
P ∗1 (P2) is (trivially) a homotopy basis of P . A coherent presentation of a category C is a
tuple (P0, P1, P2, P3) where P3 is a homotopy basis of P = (P0, P1, P2), a 2-polygraph
presenting C.

For a convergent 2-polygraph P , a family of generating critical confluences of P is a
cellular extension of the free (2, 1)-category P ∗1 (P2) containing one 3-cell for every critical
branching (α, β)

u
α

t�

β

�*
x1

α′ �*

x2

β′t�
x̂

α %9

Note that this family is not unique, since we arbitrarily choose the source and target,
i.e. direction, of each 3-cell. Similarly to the distinction between consistency theorems for
ARS and SRS, we can link the critical branchings of P to the existence of a homotopy
basis thereof:

7.2.1. Theorem. For a convergent polygraph P , every family of generating critical
confluences is a homotopy basis of P>.

7.3. Coherence in higher dimensional
rewriting systems

Here we generalise the theorems we saw in the first section of this chapter. The coherent
abstract rewriting proofs that we described for 1-polygraphs may also be interpreted in
higher dimensional rewriting systems, that is, n-polygraphs.

7.3.1. Γ-confluence. Recall from [64] that, given an n-polygraph P and a cellular
extension Γ of P>, we say that P is Γ-confluent (resp. locally Γ-confluent) if for any
branching (resp. local branching) (f, g) of P there exists a confluence (f ′, g′) completing
the branching, and an (n+ 1)-cell α in the free (n+ 1, n− 1)-category P>(Γ) of the form
α : f ?n−1 f

′ → g ?n−1 g
′. Similarly, we say that P is Γ-Church-Rosser if for any n-cell f

of P>n there exists a confluence (f ′, g′) rendering f confluent, and an (n+ 1)-cell α in
the free (n+ 1, n− 1)-category P>n (Γ) of the form α : f ?n−1 f

′ → g′.
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7.3.2. Family of generating confluences. Let P be a locally confluent n-polygraph.
As in the case of 1-polygraphs, a family of generating confluences for P is a cellular
extension Γ consisting of a, (n + 1)-cell αf,g for every local branching (f, g) and the
choice of a confluence (f ′, g′) as in the following diagram:

xf
||

g
""

x1

f ′
  

x2

g′
~~

x′

αf,g %9

7.3.3. Coherence for n-polygraphs. Let P be a (2, 0)-polygraph. We say that
Γ is a homotopy basis if for all parallel zig-zag sequences f and g in P , i.e. those with
common source and target, there exists a (n+ 1)-cell α in P>(Γ) such that sn(α) = f
and tn(α) = g. Symbolically and diagrammatically stated:

∀f, g ∈ P>1 ,

{
sn−1(f) = sn−1(g)

tn−1(f) = tn−1(g)
∃α ∈ P>(Γ)n+1, α : f ⇒ g. ·

yy

f

%%
ee

g

99⇓ α ·

A homotopy basis is also called a coherent extension of P .

7.3.4. Underlying (2, 0)-polygraph. The coherence theorem for n-polygraphs [64]
can be proved using the results from the previous section, applied to a (2, 0)-polygraph
derived from the n-polygraph in question. Throughout this section, we fix a n-polygraph
P and a cellular extension Γ of P> = P0[P1] . . . [Pn−1](Pn).

Recall from Section 5.4.12 that the underlying rewriting polygraph P c associated to P is
given by (P ∗n−1, P

c
n). We denote by (P c)> the 1-groupoid generated by this 1-polygraph.

The cellular extension Γ of P> can equally be seen as a cellular extension of (P c)>,
as a result of Remark 5.4.9. Indeed, recall that the 1-cells of (P c)> are in bijective
correspondence with the n-cells of P>. Given an element α : f → g of Γ, we may interpret
it as a 2-cell with source (resp. target) the 1-cell of (P c)> corresponding to f (resp. g).
We denote this cellular extension by Γ2, to highlight the shift in dimension.

Due to this correspondence, the notions of (local) Γ-confluence and Γ-Church-Rosser for
P coincide with the notions of (local) Γ2-confluence for P c.

7.3.5. Proposition. Let P be an n-polygraph. Then P is (locally) Γ-confluent (resp. Γ-
Church-Rosser) if, and only if P c is (locally) Γ2-confluent (resp. Γ2-Church-Rosser)

Notions of sections and strategies are also given by the underlying rewriting polygraph
associated to P . We thereby also obtain notions of strategic Γ-confluence and strategic
Γ-Church-Rosser in the n-dimensional context.

This gives us the following (abstract) coherence theorem for n-polygraphs, where we can
use both the strategic and non-strategic proof.
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7.3.6. Theorem (Coherence theorem for ARS). Let P be a locally confluent, ter-
minating n-polygraph and Γ a family of generating confluences. Then Γ is a homotopy
basis for P .



Chapter 8.
Algebraic abstract coherence

The goal of this chapter is to formulate and prove the coherence theorem for ARS,
Theorem 7.1.16, in an algebraic context generalising the abstract rewriting paradigm
provided by Kleene algebras. For this, we introduce the notion of 2-Kleene algebra, and
equip it with modalities and other algebraic structure. For now, we stay in the context
of two dimensional structures, since as was pointed out in Section 7.3.4, the coherence
theorem (without the critical branching lemma) only requires three types of information,
namely the objects and reduction rules, which are zero and one dimensional respectively,
and coherence cells, which are then two dimensional. In Chapter 9 we treat the case
of n-Kleene algebra, here we provide the minimal axioms and results which allow us to
state and prove the coherence theorem.

We start in Section 8.1 by introducing an alternative paving mechanism for coherence
proofs in the context of n-polygraphs. While the methods described in Chapter 7 use
coherence cells to relate rewriting paths, we describe an alternative description in which
coherence cells relate zig-zag sequences. This becomes important when we introduce
globular 2-Kleene algebras and their coherent rewriting properties in Sections 8.2 and 8.3,
where this “vertical” approach is more natural. In the former, we also provide models of
globular 2-Kleene algebras as liftings of polygraphs to the power-set.

In Section 8.4, we capture the notion of strategy, recalled in the polygraphic setting in
Section 7.1.19, and prove lemmas relating these to rewriting properties. Finally, Kleene
algebraic versions of the coherent normalising Newman’s lemma is formulated and proved,
leading to Theorem 8.5.2, the Kleene algebraic coherence theorem in the context of
abstract rewriting.

Results and definitions in this chapter are along the lines of [16] and constitute personal
contributions. As indicated above, a more extensive treatment of higher Kleene algebras,
as introduced in [17] can be found in Chapter 9; here we provide a minimal description
in order to simplify the road towards Theorem 8.5.2.

121
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8.1. A vertical approach to coherence

In Section 6.2, the rewriting properties of Kleene algebra were described. Recall that in
that context, the universal and existential quantification on branchings and confluences,
respectively, was encoded by inequalities which we called semi-commutations. This means
that the flow of proofs move from branchings to confluences, i.e. vertically. On the
other hand, in Section 7.1.3, we saw that in the polygraphic context, the usual direction
of higher cells in coherence proofs are horizontal. In order to describe how coherent
rewriting techniques may be expressed in Kleene algebraic structures, we explain how
this vertical approach to coherence is instantiated in the polygraphic context.

Although the following sections focus on 2-Kleene algebras, we explain this approach in the
context of n-polygraphs in order to relate it to higher Kleene algebras in Chapter 9.

8.1.1. Coherent confluence. Let P be an n-polygraph and Γ a cellular extension
of P>n .

The cellular extension Γ is a confluence filler of a branching (f, g) of P if there exist
rewriting paths f ′, g′ of P as in (8.1.2), and two (n+ 1)-cells α, α′ in the free (n+ 1)-
category P>n [Γ] of the form α : f−?n−1g → f ′?n−1(g′)− and α′ : g−?n−1f → g′?n−1(f ′)−:

uf
||

g
!!

u1

f ′
  

v1

g′
~~

u′

u<<f− g
!!

u1

f ′
  

v1
>>

(g′)−u′

α��

uf
||

u1 v1

g′
~~

g−aa

u′(f ′)−
`` α′�� (8.1.2)

In this case, α and α′ are n-compositions of (n+ 1)-cells of Γc as recalled in Remark 5.4.9.
We say that the cellular extension Γ is a confluence filler for the polygraph P if Γ is a
confluence filler for each of its branchings.

More generally, the cellular extension Γ is a confluence filler of an n-cell f in P>n if there
exist n-cells f ′ and g′ in P ∗n and an (n+ 1)-cell α in the free (n+ 1)-category P>n [Γ] of
the form α : f → f ′ ?n−1 g

′−:

u

f ′ ##

f
// v

g′{{

u′

u

f ′ ##

f
// v

u′
(g′)−

;;

α
��

(8.1.3)

The cellular extension Γ is a Church-Rosser filler for an n-polygraph P when it is a
confluence filler of every n-cell in P>n .

8.1.4. Theorem (Church-Rosser coherent filler lemma). Let P be an n-polygraph.
A cellular extension Γ of P>n is a confluence filler for P if, and only if, Γ is a Church-
Rosser filler for P .

Proof. First suppose that Γ is a Church-Rosser filler for P . Given a branching (f, g), we
have that f− ?n−1 g and g− ?n−1 f are elements of P>n and thus Γ is a confluence filler
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for these n-cells. This gives us the cells α and α′ as in (8.1.2), and so Γ is a confluence
filler for P .

Conversely, suppose that Γ is a confluence filler for P , and let f ∈ P>n be an n-cell. We
prove by induction on the length of f that Γ is a Church-Rosser filler for P . For f of
length 0 or 1, we clearly have that f is Γ-confluent, since it suffices to take an identity
(n + 1)-cell. Suppose that every n-cell of length k ≥ 2 is Γ-confluent and that f is of
length k+ 1. Then f = f1 ?n−1 f2 with f1 : u→ u1 in P>n of length k and f2 is of length
1 in P ∗n either of the form v → u1 or u1 → v. By the induction hypothesis there exist
rewriting paths h and k and an (n + 1)-cell α such that α : f ⇒ hk−. If f2 : u1 → v,
there exist rewriting paths k′ and f ′′ and an (n+ 1)-cell β as depicted in diagram (8.1.5)
since Γ is a confluence filler for P . Thus (αf2) ?n (hβ) is a confluence filler for f .

u oo
f1

//

h
$$

u1
f2

// v

u′

k−

99

k′
// u′′

f ′′
−

::

α
��

β
�� (8.1.5)

If f2 : v → u1, the (n+ 1)-cell αf−2 ?n h1k−(f2)− = αf−2 is a confluence filler for f .

u oo
f1

//

h
$$

u1

(f2)−
// v

u′

k−

99

(f2)−
// u′′

k−

::

α
��

1k−(f2)−
�� (8.1.6)

8.1.7. Theorem (Coherent Newman filler lemma). Let P be a terminating n-
polygraph, and Γ a cellular extension of P>n . Then Γ is a local confluence filler, if, and
only if, Γ is a confluence filler for P .

Proof. Firstly, observe that if Γ is a confluence filler for P , then it is also a local confluence
filler for P since local branchings are also branchings.

Now suppose that Γ is a local confluence filler for P . We prove by Noetherian induction
that, for every (n− 1)-cell u of P ∗n , Γ is a confluence filler for every branching of P with
source u. For the base case, if u is irreducible for P , then (1u, 1u) is the only branching
with source u, and it is Γ-confluent, taking the (n+ 1)-cell 11u .

Suppose now the induction hypothesis, namely that u is a reducible (n− 1)-cell of P ∗n
and that Γ is a confluence filler for every branching with source an (n− 1)-cell u′ such
that u rewrites to u′. Let (f, g) be a branching of P with source u. If one of f or g is an
identity, say f , then Γ is a confluence filler for (f, g) by considering the (n+ 1)-cells 1g
and 1g− . We may now suppose that the n-cells f and g are not identities, thus we write
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f = f1 ?n−1 f2 and g = g1 ?n−1 g2, where g1, f1 are rewriting steps and g2, f2 are n-cells
of P ∗n . Since Γ is a local confluence filler for P , there exist n-cells f ′1, g′1 in P ∗n , and an
(n+ 1)-cell α in P ∗n [Γ] as in the diagram (8.1.8). We apply the induction hypothesis to
the branching (f2, f

′
1), which yields n-cells f ′2, h in P ∗n and an (n+ 1)-cell β in P ∗n [Γ] as

in the diagram (8.1.8). Finally, we apply the induction hypothesis again to the branching
(g′1 ?n−1 h, g2) yielding n-cells k and g′2 and an (n+ 1)-cell γ in P ∗n [Γ] as in (8.1.8).

u<<f−1 g1

!!

u1

f ′1
  

>>f−2
v1
>>

(g′1)−
g2

  

u2

f ′2 ��

u′
??

h−

v2
??

(g′2)−
u′2

k ��

u′′

α
��

β
��

γ
��

(8.1.8)

The n-composition

δ = (((f−2 ?n−1 α) ?n (β ?n−1 (g′1)−)) ?n−1 g2) ?n (f ′2 ?n−1 γ) (8.1.9)

is an (n+ 1)-cell in P ∗n [Γ] with source f− ?n−1 g and target f ′2 ?n−1 k ?n−1 (g′2)−. We can
similarly find an (n+ 1)-cell δ′ with source g− ?n−1 f and with target a confluence. Γ is
thus a confluence filler for P , which proves the result.

8.1.10. Remark. We have defined two approaches to coherence properties of an
n-polygraph P with respect to a cellular extension Γ:

i) A “vertical” approach in which the coherence cells, i.e. the (n+ 1)-cells generated
by Γ, have a branching as n-source and a confluence as n-target. This necessitates
having inverses of n-cells, that is Γ is a cellular extension of P>n . For example, in
the proofs of Theorems 8.1.4 and 8.1.7, we do not need inverses of (n+ 1)-cells.

ii) A “horizontal” approach in which coherence cells have rewriting paths for both
source and target, and we do not need inverses of n-cells, i.e. we consider cellular
extensions of P ∗n , only inverses of (n + 1)-cells in order to prove Theorems 7.1.4
and 7.1.7, which yield the higher dimensional analogues as described in Section 7.3.4.

These differences can be summed up by saying that, in the first approach, the proofs
take place in P>n [Γ], whereas, in the second one, the proofs take place in P ∗n(Γ).

Furthermore, it is worth noting that, in the first approach, we specify two filler cells α
and α′ as depicted in diagram 8.1.2 for each branching (f, g). This is due to the fact
that branchings are unordered pairs, so we must account for both cases. This equally
constitutes the reason we require inverses of (n+ 1)-cells in the second approach.
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In the rest of this document, we will exclusively consider the vertical approach to
paving diagrams with higher dimensional cells. The motivation of this choice lies in
the fact that with Kleene algebras, we pave diagrams from a relational rather than a
polygraphic point of view. We thus follow the direction of the n-cells in branchings and
confluences, i.e. vertically. This is a consequence of the quantification on branchings and
confluences: we quantify universally over branchings and existentially over confluences.
In the polygraphic approach, this quantification is hidden by specifying the choice of
(n+ 1)-cells filling confluence diagrams.

8.2. Globular 2-Kleene algebras

Here we introduce globular 2-Kleene algebras, a natural extension of Kleene algebra, in
order to formulate and prove coherence theorems for abstract rewriting systems in a
point-free algebraic setting. These constitute a special case of globular n-Kleene algebras,
introduced in [17], see Chapter 9.

8.2.1. 2-dioids. A 2-dioid is a structure

(S,+, 0,�0, 10,�1, 11)

such that for each i ∈ {0, 1}, the tuple (S,+, 0,�i, 1i) is a dioid and such that the
following axioms hold:

− The lax interchange law : for all A,A′, B,B′ ∈ K,

(A�1 A
′)�0 (B �1 B

′) ≤ (A�0 B)�1 (A′ �0 B
′). (8.2.1)

− The 1-unit is an idempotent for 0-multiplication, that is

11 �0 11 = 11. (8.2.2)

For i ∈ {0, 1}, we refer to �i and 1i as the i-multiplication and the i-unit, respectively. In
contrast to the equational case, the lax interchange law does not incur an Eckmann-Hilton
collapse. Note that these axioms correspond to those of concurrent semirings [75], except
that the equality 10 = 11 is normally assumed in the concurrent case.

The above axioms provide an underlying algebraic structure for reasoning about coherence
in the context of abstract rewriting. The lax interchange law corresponds to the lifting of
the equational interchange law for compositions in a 2-category, while the idempotence
of the 1-unit expresses the fact that the set of 1-cells in a 2-category are closed under
0-composition.

In what follows, we fix a 2-semiring (S,+, 0,�i, 1i)i=0,1.
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8.2.2. Domain 2-semirings. We now augment S with multiple domain maps. We
say that S is a domain 2-semiring if it is equipped with maps

d0 : S → S and d1 : S → S

called 0- and 1-domain, respectively. These must satisfy that for each i ∈ {0, 1},
(S,+, 0,�i, 1i, di) is a domain semiring, and the absorption axiom

d1 ◦ d0 = d0. (8.2.3)

For i ∈ {0, 1}, the set Sdi = di(S) will be called the i-domain algebra, and will be denoted
by Si. The absorption axiom (8.2.3) implies that S0 ⊆ S1, i.e. we have a hierarchization
of domain algebras. This inclusion is akin to viewing, for example 0-cells in a category as
identity 1-cells. For this reason, elements of Si will be referred to as i-dimensional.

Furthermore, to distinguish elements of distinct dimensions, we henceforth denote
elements of S0 by p, q, r, . . . , elements of S1 by φ, ψ, ξ, . . . , and other elements of S
by A,B,C, . . . This notation simplifies the reading of proofs when elements of different
dimensions are interacting.

8.2.3. Boolean domain 2-semirings. We may also augment the domain algebras
with a Boolean structure. For p ∈ {0, 1} we say that S is p-Boolean if it is augmented
with (p+ 1) maps

(ad i : S → S)0≤i≤p

such that for all 0 ≤ i ≤ p, the following conditions are satisfied:

i) (S,+, 0,�i, 1i, ad i) is a Boolean domain semiring,

ii) di = ad2
i .

The map ad i is called i-antidomain because, as recalled in Section , the restriction of
ad i to Si provides the latter with the structure of a Boolean algebra. For this reason, we
denote this restriction by ¬i. By definition, a 0-Boolean domain 1-semiring is a Boolean
domain semiring, and by convention we say that a 0-Boolean domain 0-semiring is a
Boolean algebra.

8.2.4. Modal 2-semirings. As in the case of 1-semirings, we also define a notion of
codomains. Denote by Sop the 2-semiring in which the order of multiplication has been
reversed. We say that S is a (p-Boolean) codomain 2-semiring if Sop is a (p-Boolean)
domain 2-semiring. We will denote the codomain maps by ri. The codomain algebras
are defined analogously to those given by domain, and will temporarily be denoted by
Sri .

We say that S is modal if it is a domain and codomain 2-semiring and the following
compatibility axioms hold for all i ∈ {0, 1}:

di ◦ ri = ri and ri ◦ di = di. (8.2.5)
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These axioms ensure that the domain and codomain algebras coincide, i.e. that Sdi = Sri .
For this reason, we will maintain the moniker i-domain algebra and the notation Si.

We say that S is a p-Boolean modal semiring if it is p-Boolean with respect to both
domain and codomain. In this case, the compatibility axiom (8.2.5) is not necessary, as
was pointed out in Section 6.1.5 .

8.2.6. Modal operators. The i-diamond operators of a modal 2-Kleene algebra K
are defined via the (co-)domain operators in each dimension. For i ∈ {0, 1}, A ∈ K and
φ ∈ Ki,

|A〉i(φ) = di(A�i φ), and 〈A|i(φ) = ri(φ�i A).

These modal operators have all of the properties recalled in Section 6.1 with respect to
i-operations and elements of Ki.

In the case of a p-Boolean modal Kleene algebra, we may also define i-box operators for
all i ≤ p. For A ∈ K and φ ∈ Ki,

|A]i(φ) := ¬i|A〉i(¬iφ), and [A|i(φ) = ¬i〈A|i(¬iφ).

8.2.7. Converses. Throughout this chapter, we will consider modal 2-Kleene algebras
with 0-converses, i.e. equipped with an operation (−) : K1 → K1 such that

(K1,+, 0,�0, 10, (−)∗0 , (−))

is a MKA with contracting converse, as defined in Section 6.1.17. For a more gen-
eral notion of converse in higher-dimensional Kleene algebra, we refer the reader to
Section 9.5.1.

8.2.8. Globularity. A modal 2-Kleene algebra K is globular if the following globular
relations hold for all A,B ∈ K:

d0 ◦ d1 = d0 and d0 ◦ r1 = d0,

r0 ◦ d1 = r0, and r0 ◦ r1 = r0,

d1(A�0 B) = d1(A)�0 d1(B),

r1(A�0 B) = r1(A)�0 r1(B).

As a consequence of the rightmost axioms, K1 is a MKA with respect to 0-operations.
An element A of K will be represented graphically by the below diagram with respect to
its 0- and 1-domains and codomains.

d0(A)

d1(A)

''

r1(A)

77
⇓ A r0(A)
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8.2.9. Modal 2-Kleene algebras. The 1-star (−)∗1 is a lax morphism with respect
to 0-multiplication of 1-dimensional elements on the right (resp. left), i.e. for all A ∈ K
and φ ∈ K1,

φ�0 A
∗1 ≤ (φ�0 A)∗1 , (resp. A∗1 �0 φ ≤ (A�0 φ)∗1).

In order to distinguish elements of distinct dimensions, we denote elements of K0 by
p, q, r, . . . , elements of K1 by φ, ψ, ξ, . . . , and elements of K of non-determinate dimension
by A,B,C, . . .

8.2.10. Polygraphic model. Here we provide a minimal description of the poly-
graphic model of 2-Kleene algebras in order to provide intuition. A full treatment can be
found in Section 9.1.19.

Let (Φ, X) be a (2, 0)-polygraph. We define K(Φ, X), the full 2-path algebra over (Φ, X)
as follows. Let X>2 denote the set of 2-cells in X>. The carrier set of K(Φ, X) is the
power set P(X>2 ), whose elements, denoted by A,B,C . . . are sets of 2-cells, which in
turn are denoted by α, β, γ . . . Recall that for each 1-cell x of X>, there exists a unique
2-cell 1x, its identity 2-cell, and similarly, for each 0-cell a there exists a unique 2-cell
11a , the identity 2-cell on its identity 1-cell. For i ∈ {0, 1}, the i-composition, i-source
and i-target maps are thereby defined for cells of any dimension.

For i ∈ {0, 1}, the multiplication �i on K(Φ, X) is the lifting of the composition
operations of X> to the power-set, i.e. for any A,B ∈ K(Φ, X),

A�i B := {α ?i β | α ∈ A ∧ β ∈ B ∧ ti(α) = si(β)}.

The units are the sets 10 = {11a | a ∈ Φ0}, and 11 = {1x | x ∈ Φ>1 }. The addition
in K(Φ, X) is given by set union; the ordering is therefore given by set inclusion. The
domain and codomain maps are defined by

d0(A) := {11s0(α)
| α ∈ A}, r0(A) := {11t0(α)

| α ∈ A},

d1(A) := {1s1(α) | α ∈ A}, and r1(A) := {1t1(α) | α ∈ A},

and are thus given by lifting the source and target maps of X> to the power set.
The i-antidomain and i-anticodomain maps are then given by complementation with
respect to the set of i-cells. The i-star is given by A∗i =

⋃
k∈NA

ki , where in the
above, A0i := 1i and Aki := A�i A(k−1)i . For ψ ∈ K(Φ, X)1, the converse is given by
ψ := {1x− | 1x ∈ ψ}.

8.2.11. Proposition ([17]). Let (Φ, X) be a (2, 0)-polygraph. Then, K(Φ, X) is a
globular Boolean modal 2-Kleene algebra.

Proof. See the proof of Proposition 8.2.11, of which this is a special case.
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8.3. Coherent rewriting and modal 2-Kleene
algebras

Here, we recall a minimal account of coherent rewriting properties in globular 2-Kleene
algebras [17]. A more complete treatment of coherent rewriting mechanisms in higher
Kleene algebras can be found in Sections 9.2 and 9.3.

8.3.1. Fillers. We fix K a globular 2-Kleene algebra. Given A ∈ K and φ, φ′ ∈ K1,
|A〉1(φ) ≥ φ′ is equivalent to d1(A�1 φ) ≥ φ′ by definition. In terms of quantification
over collections of cells, this means that for every u in φ′, there exist v in φ and α in A
such that the 1-source (resp. 1-target) of α is u (resp. v). This observation motivates the
following definitions from [17]. For φ, ψ in K1, an element A in K is

− a local confluence filler for (φ, ψ) if |A〉1(ψ∗0 �0 φ
∗0) ≥ φ�0 ψ,

− is a confluence filler for (φ, ψ) if |A〉1(ψ∗0 �0 φ
∗0) ≥ φ∗0 �0 ψ

∗0 ,

− and is a Church-Rosser filler for (φ, ψ) if |A〉1(ψ∗0 �0 φ
∗0) ≥ (ψ + φ)∗0 .

8.3.2. Whiskers and completion. The right (resp. left) whiskering of an element
A ∈ K by φ ∈ K1 is the element A�0 φ (resp. φ�0 A). Recall from [17] that whiskering
commutes with 1-diamonds, that is, for all A ∈ K and φ, ψ, φ′, ψ′, γ ∈ K1 such that
φ′ ≤ φ, ψ′ ≤ ψ, and d1(A) ≤ γ, we have:

φ′ �0 |A〉1(γ)�0 ψ
′ = |φ′ �0 A�0 ψ

′〉1(φ�0 γ �0 ψ). (8.3.1)

Fix a (local) confluence filler A of a pair (φ, ψ) of elements in K1. The total whiskering
of A, denoted by Â, is the following element of K:

Â := (φ+ ψ)∗0 �0 A�0 (φ+ ψ)∗0 . (8.3.2)

8.3.3. Completion. The 1-star of Â is called the completion of A. Note that this
element absorbs whiskers, that is, for every ξ ≤ (φ+ ψ)∗0 ,

ξ �0 Â
∗1 ≤ Â∗1 and Â∗1 �0 ξ ≤ Â∗1 . (8.3.3)

8.4. Formalisation of normalisation
strategies

In this section, we formalise the notion of normalisation strategy, introduced in [67]. We
first define notions of section, skeleton and strategy in one-dimensional Kleene algebras
and show properties thereof [16]. In what follows, we consider a Boolean MKA K with
converse and an element x ∈ K.
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8.4.1. Sections, skeleta and strategies.

i) The equivalence generated by x is the element x> := (x + x)∗. For p ∈ Kd, the
x-saturation of p is the element |x>〉(p) ∈ Kd.

ii) A covering set for x is an element q ∈ Kd such that |x>〉(q) ≥ 1, i.e. whose
x-saturation is total. A section of x is a minimal covering set.

iii) A wide sub of x is an element w ≤ x such that |w〉 = |x〉 and 〈w| = 〈x|. A skeleton
of x is a minimal wide sub.

iv) Given a section s0 of x, a strategy for x relative to s0 is a skeleton σ of x>s0 such
that s0σ ≤ s0.

8.4.2. Remark. Note that when (Φ, X) is a (2, 0)-polygraph, we describe Φ in
K(Φ, X) as the element φ := {1x |x ∈ Φ1} ∪ {11a | a ∈ Φ0}. In K(Φ, X)1, which
we recall is a Boolean MKA for 0-operations, the equivalence generated by φ corresponds
to the 1-groupoid Φ>, and a section corresponds to a choice of a representative 0-cell
for each connected component in Φ>. A wide sub of φ is a subset ψ such that for any
1-cell x : a → b ∈ Φ1, there exists some parallel 1-cell x′ : a → b ∈ Φ1 such that
1x′ ∈ ψ. A skeleton of φ therefore corresponds to the choice of a single 1-cell amongst
the sets of parallel 1-cells in Φ; it is thus not unique and does not coincide with φ in
general. When Φ is convergent and {σa}a∈φ0 is a strategy in the sense of Section 8.4,
then σ = {1σa |a ∈ φ0} is a strategy for φ in K(φ,X) with respect to NF(φ). This result
is proved for any convergent element of a MKA in Proposition 8.4.5.

By definition, a strategy σ satisfies d(σ) = d(x>s0) = 1, and r(σ) = r(x>s0) = s0. The
following lemma states that a strategy contains the associated section:

8.4.3. Lemma ([16]). Given a section s0 of x and a strategy σ for x relative to s0, we
have s0σ = s0 and s0 ≤ σ.

Proof. By hypothesis we have s0σ ≤ s0. Showing that s0σ is a covering set allows us
to deduce by minimality of s0 that s0 ≤ s0σ ≤ σ, which gives both desired conclusions.
Since σ is a strategy relative to x, we know that 〈x>s0| = 〈σ|. We calculate the saturation
of s0σ

〈x>|(s0σ) = r(s0σx
>) = 〈x>|〈σ|(s0) = 〈x>|〈x>s0|(s0) ≥ 〈x>|(s0) ≥ 1,

where we used properties of modalities for the first two steps, then the hypothesis that
σ is a strategy. To conclude, we used that 〈x>s0|(s0) ≥ 〈s0|(s0) = s0 and that s0 is a
covering set.

By conversion, we also get σs0 = s0 and s0 ≤ σ. This immediately gives the following
properties of a strategy σ relative to a section s0:

σ · σ = σ, σ · σ = σ, σ ≤ σ · σ and σ ≤ σ · σ. (8.4.1)
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Indeed, σσ = σs0σ = σs0 = σ by the fact that r(σ) = s0 and Lemma 8.4.3, the case of
σ follows by conversion. Additionally, s0 ≤ σ so σ = σs0 ≤ σσ and symmetrically for
σ.

Next, we will show that the normal forms and exhaustive iteration of a convergent
element give us a section and a strategy, respectively. First, we show:

8.4.4. Lemma ([16]). Let K a Boolean MKA. For a convergent element x ∈ K, we
have |x>〉 = |exh(x)〉〈exh(x)|.

Proof. One direction holds since exh(x)exh(x) ≤ x∗x∗ ≤ x> so by monotonicity of
taking diamonds and reversal of diamonds by conversion, we get |x>〉 ≥ |exh(x)〉〈exh(x)|.
The other inequality is obtained via the star induction law for modalities (??). Indeed,
it suffices to prove that

|1〉+ |x+ x〉|exh(x)exh(x)〉 ≤ |exh(x)exh(x)〉.

We prove the inequality for each of the summands. We treat the case of |1〉 first: by
definition,

|exh(x)exh(x)〉(p) = d(x∗¬d(x)r(px∗)) = d(x∗r(px∗)¬d(x)),

where we used the so-called import-export law [28] r(yp) = r(y)p for codomains and that
multiplication is commutative in Kd. Since p ≤ 1 we have

px∗r(px∗)¬d(x) ≤ x∗r(px∗)¬d(x),

and since (px∗)r(px∗) = px∗, applying domain on both sides yields

|exh(x)exh(x)〉(p) ≥ d(px∗¬d(x)) = pd(exh(x)) = p,

where we used the import-export law for domains d(py) = pd(y) and Lemma 6.2.7. Thus
|exh(x)exh(x)〉 ≥ |1〉. The case of |x〉 follows by the star unfold axiom:

|x〉|x∗¬d(x)x∗〉 = |xx∗¬d(x)x∗〉 ≤ |x∗¬d(x)x∗〉.

The final case follows by the hypothesis of confluence:

|x〉|x∗¬d(x)x∗〉 = 〈x||x∗〉〈exh(x)| ≤ 〈x∗||x∗〉〈exh(x)|
≤ |x∗〉〈x∗|〈exh(x)|
≤ |x∗〉〈exh(x)x∗| = |x∗¬d(x)x∗〉,

where we also used exh(x)x∗ = exh(x). Applying the star induction axiom for modalities,
we obtain the result.

Now we are ready to relate exhaustion and normal forms to strategies and sections,
respectively:
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8.4.5. Proposition ([16]). If x is convergent, then NF(x) is a section of x. Fur-
thermore, any skeleton σ of exh(x) is a strategy for x with respect to NF(x), and we
have

σ ≤ NF(x) + x+, σ ≤ NF(x) + x+ and σσ = NF(x)

Proof. First we show that NF(x) is a section. It is a covering set since

|x>〉(NF(x)) ≥ |exh(x)〉(NF(x)) = d(exh(x)) = 1

where the last step is by Lemma 6.2.7. Suppose now there is some s ∈ Kd such that
s ≤ NF(x) and s is a covering set. Since s ≤ NF(x) ≤ ¬d(x), the star unfold and
antidomain axioms give s · exh(x) = s, so 〈exh(x)|(s) = s.

Therefore 1 = |x>〉(s) = |exh(x)〉〈exh(x)|(s) = |exh(x)〉(s), where we used Lemma 8.4.4.
This means that

s ≥ 〈exh(x)||exh(x)〉(s) = 〈exh(x)|(1) = r(exh(a)) = NF(x),

where the first inequality is by Lemma 6.2.7, so we may conclude NF(x) = s, i.e. NF(x)
is minimal.

Now we show that a skeleton σ of exh(x) is a strategy for x relative to NF(x). Note that
|x>NF(x)〉 = |x>〉〈NF(x)〉 and 〈x>NF(x)| = 〈NF(x)〉〈x>|. By Lemma 8.4.4,

|x>NF(x)〉 = |exh(x)〉〈exh(x)|〈NF(x)〉 = |exh(x)〉〈NF(x)〉 = |exh(x)〉,

since NF(x)exh(x) = NF(x), and exh(x)NF(x) = exh(x). A symmetric proof gives
〈x>NF(x)| = 〈exh(x)|. Since σ is a skeleton of exh(x), its diamonds coincide with those
of exh(x) and so, by what precedes, also with those of x>NF(x). Since exh(x) ≤ x>NF(x),
σ is a wide sub of x>NF(x). Minimality of σ as a wide sub follows from that same
inequality plus the hypothesis that it is a skeleton of exh(x). To conclude, note that
NF(x)σ ≤ NF(x)exh(x) = NF(x). The first inequality follows from

σ ≤ exh(x) = x∗NF(x) = (1 + xx∗)NF(x) ≤ NF(x) + xx∗ = NF(x) + x+,

where we used the definition of exh(x), the left star unfold axiom, NF(x) ≤ 1 and the
definition of the Kleene plus. The inequality for σ is then obtained by conversion. Finally,
since σ ≤ exh(x) and x is confluent, we get

σσ ≤ exh(x)exh(x) = NF(x)x∗x∗NF(x) ≤ NF(x)x∗x∗NF(x) = NF(x),

where we also used that NF(x) ≤ ¬d(x) = ¬r(x).

8.5. Abstract coherence in 2-MKA

Now we are equipped to prove the abstract coherence theorem in the context of globular
2-Kleene algebras. First, we prove Theorem 8.5.1, a Kleene algebraic version of the
strategic Newman’s lemma, Theorem 7.1.22. We then prove Theorem 8.5.2, the main
result of this chapter. These results were published in [16].
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8.5.1. Theorem (Coherent normalising Newman’s lemma [16]). Let K be a
Boolean globular 2-Kleene algebra such that

i) (K0,+, 0,�0, 10,¬0) is a complete Boolean algebra,

ii) K1 is continuous with respect to 0-restriction, that is for all ψ,ψ′ ∈ K1 and
(pα)α ⊆ K0 we have ψ �0 ∨pα �0 ψ

′ = ∨ (ψ �0 pα �0 ψ
′).

Let φ ∈ K1 be convergent and σ be a skeleton of exh(φ). If A is a local confluence filler
for (φ, φ), then |Â∗1〉1(σ �0 σ) ≥ φ∗0 �0 φ

∗0.

Proof. We denote 0-multiplication by juxtaposition. First, we define a predicate RNP
expressing restricted normalised paving. Given p ∈ K0, let

RNP (p) ⇔ |Â∗1〉1(σσ) ≥ φ∗0pφ∗0 .

By completeness of K0, we set r := sup{ p |RNP (p)} and by continuity of restriction we
may infer RNP (r). Furthermore, by downward closure of RNP , we have RNP (p) if,
and only if, p ≤ r. We thereby deduce:

∀p. (RNP (〈φ|0p)⇒ RNP (p))⇔ ∀p. (〈φ|0p ≤ r ⇒ p ≤ r)
⇔ ∀p. (p ≤ |φ]0r ⇒ p ≤ r)
⇔ |φ]0r ≤ r

where we used the Galois connection (6.1.12). Thus, it suffices to show that

∀p. (RNP (〈φ|0p)⇒ RNP (p))

in order to conclude that r = 10, by Noethericity of φ. This method constitutes formalised
Noetherian induction for Boolean MKA.

Given p ∈ K0, we denote by pφ the element 〈φ|0(p) = |φ〉0(p). We have

pφ = pφr0(pφ) = pφ〈φ|0(p) ≤ φpφ,

and similarly φp ≤ pφφ. Using the star unfold axioms, we thereby deduce that

φ
∗0
pφ∗0 ≤ φ∗0p+ φ

∗0
φpφφ∗0 + pφ∗0 ≤ φ∗0p+ φ

∗0
pφφφpφφ

∗0 + pφ∗0 .

We first examine the middle summand:

φ
∗0
pφφφpφφ

∗0

≤ φ∗0pφ|A〉1(φ∗0φ
∗0

)pφφ
∗0

≤ |φ∗0pφApφφ∗0〉1(φ
∗0
pφφ

∗0φ
∗0
pφφ

∗0)

≤ |Â〉1(φ
∗0
pφφ

∗0φ
∗0
pφφ

∗0)

≤ |Â〉1(|Â∗1〉1(σσ)φ
∗0
pφφ

∗0)

≤ |Â〉1(|Â∗1〉1(σσφ
∗0
pφφ

∗0))

≤ |Â〉1(|Â∗1〉1(|Â∗1〉1(σσσσ)))

≤ |Â�1 Â
∗1 �1 Â

∗1〉1(σσσσ) ≤ |Â∗1〉1(σσ).

p
φ

  

>>φ

pφ

φ∗
  

??φ
∗ pφ

φ∗

��

>>

φ
∗

·
σ   

·
σ   

>>

σ

·>>
σ· ·
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where we used that A is a local confluence filler for the first step, then commutation
of modalities with whiskering (8.3.1) and the definition of Â (8.3.2) for the second and
third steps. We then use the induction hypothesis RPN(pφ) on the left instance of
φ
∗0
pφφ

∗0 , followed by commutation of modalities with whiskering and whisker absorption
(8.3.3), and then repeat for the instance on the right. Finally, we used that Â�1 Â

∗1 ≤
Â∗1 �1 Â

∗1 ≤ Â∗1 , monotonicity of taking diamonds and σσ = NF(φ) = r(σ), a
consequence of Proposition 8.4.5.

It remains to show that φ∗0p, pφ∗0 ≤ |Â∗1〉1(σσ). First, observe that we have

σpφ∗0 = σp+ σpφ+0

≤ σ + (NF(φ) + φ
+0

)pφ+0

= σ + φ
+0
pφ+0 ≤ σσ + φ

+0
pφ+0 ≤ |Â∗1〉1(σσ).

p
φ∗

��

@@σ

·
σ ��

·@@
σ·

The first step is by the unfold axiom, the second uses Proposition 8.4.5 to bound σ.
The third step uses the fact that NF(φ) is a left annihilator for φ+0 since by definition
we have NF(φ) ≤ ¬d0(φ). Finally we use the fact that σ ≤ σσ (8.4.1) coupled with
idK1 = |11〉1 ≤ |Â∗1〉1, i.e. reflexivity of Â∗1 , as well as the bound established by the
previous calculation.

For convergent φ, we have d0(exh(φ)) = d0(φ∗0¬d0(φ)) = 10 by Lemma 6.2.7. Since σ is
a skeleton of exh(φ), we have d0(σ) = 10. By the converse axiom (6.1.20), this means
that σσ ≥ 10. Therefore,

pφ∗0 ≤ σσpφ∗0

≤ σ|Â∗1〉1(σσ)

≤ |Â∗1〉1(σσσ) = |Â∗1〉1(σσ),

·
σ ��

p
φ∗

��

@@
σ

·
σ ��

·@@
σ·

where we used commutation of whisker with modalities and whisker absorption, as well
as σσ = σ (8.4.1). A symmetric argument yields φ∗0p ≤ |Â∗1〉1(σσ), concluding the
proof.

The use of formalised Noetherian induction, as well as the calculation establishing the
upper bound for the middle summand, are similar to those in the proof of Newman’s
lemma in [28], reproduced in Section 6.2 as Theorem 6.2.9. Due to the fact that our
result involves confluences in σ, the bounds for the outer summands require a different
approach.

As a direct consequence of Theorem 8.5.1, we obtain the following result, which formalises
Theorem 8.5.2. Indeed, if (Φ, X) is a (2, 0)-polygraph satisfying the corresponding
hypotheses, Theorem 8.5.2 lifts the result to the power set when applied to φ := {1x |x ∈
Φ1}∪{11a | a ∈ Φ0} and A = X, viewed as elements of K(Φ, X). Following the argument
given in Section 8.3, the conclusion asserts that for every zig-zag sequence f : a→ b ∈ Φ>1 ,
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there exists a 2-cell αf : f ⇒ σa ?0 σ
−
b obtained by whiskering and composing elements

of X. In a 2-groupoid, this is equivalent to the existence of a 2-cell f ?0 σb ⇒ σa.

8.5.2. Theorem (Abstract coherence theorem [16]). Let K be a Boolean globular
2-Kleene algebra satisfying the additional hypotheses in Theorem 8.5.1 and φ ∈ K1

convergent. Given a normalisation strategy σ and a local confluence filler A for (φ, φ),
we have

|Â∗1〉1(σ �0 σ) ≥ φ>0 = (φ+ φ)∗0 .

Proof. We denote 0-multiplication by juxtaposition. As a result of Theorem 8.5.1 we
have |Â∗1〉1(σσ) ≥ φ∗0φ∗0 . By the star induction axiom, it suffices to show:

10 + (φ+ φ)|Â∗1〉1(σσ) ≤ |Â∗1〉1(σσ).

By (6.1.20) and Proposition 8.4.5, we have σσ ≥ d0(σ) = 10, so by reflexivity of Â∗1 ,
i.e. 11 ≤ Â∗1 , we have 10 ≤ |Â∗1〉1(σσ). Furthermore, since φ ≤ φ∗0φ∗0 we have:

φ|Â∗1〉1(σσ) ≤ φ∗0φ∗0 |Â∗1〉1(σσ) ≤ |Â∗1〉1(σσ)|Â∗1〉1(σσ) ≤ |Â∗1〉1(σσ).

The case of φ is identical. We conclude via the star induction axiom.

Note that in essence, the proof of this coherence theorem is similar to the proof of that
of Theorem 7.1.16 found in Section 7.1.21. Indeed, first we prove a strategic Newman’s
lemma, and then we apply a Church-Rosser argument with respect to confluences in the
strategy.
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Chapter 9.
Higher Kleene algebras

In this chapter, we address rewriting paradigms with Kleene algebra in more generality
than in the previous. Mainly, we introduce higher Kleene algebras (HKA), generalising
the case of globular 2-Kleene algebras to arbitrary dimension. We provide a full account
of their properties, both as algebraic structures and as algebraic tools for coherence proofs.
Further, we prove coherent, higher versions of Newman’s lemma and the Church-Rosser
theorem in this context, and express the coherence theorem, Theorem 8.5.2, in this
higher setting. Finally, we show that the Kleene algebraic versions of coherent rewriting
theorems correspond to their polygraphic counterparts through the polygraphic model of
HKA.

In Section 9.1, we introduce globular n-Kleene algebras step by step, starting with
n-dioids and progressively adding more structure. In particular, Section 9.1.19 provides
a full description of the HKA obtained by lifting higher polygraphs to the power-set
level. Next, in Section 9.2 we describe coherent confluence properties in HKA, and
prove two versions of the Church-Rosser theorem, Theorems 9.2.8 and 9.2.9, the first
using a external induction technique, the other using the internal induction principle
provided by the Kleene star axioms. Section 9.3 contains the HKA version of Newman’s
lemma, Theorem 9.3.2. In Section 9.4, we see the coherence theorem for HKA. Finally,
Theorems 9.2.9 and 9.3.2 are related to their polygraphic counterparts via the power-set
model in Section 9.5.

Results in this chapter are original contributions, first appearing in [17], excepting
Proposition 9.1.18 which appears for the first time in this thesis.

9.1. Higher Kleene algebras

9.1.1. n-Dioid. We define a 0-dioid as a bounded distributive lattice and a 1-dioid
as a dioid. More generally, for n ≥ 1, an n-dioid is a structure (S,+, 0,�i, 1i)0≤i<n
satisfying the following conditions:

i) (S,+, 0,�i, 1i) is a dioid for 0 ≤ i < n,

137
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ii) the following lax interchange laws hold for all 0 ≤ i < j < n:

(x�j x′)�i (y �j y′) ≤ (x�i y)�j (x′ �i y′) (9.1.2)

iii) Higher dimensional units are idempotents of lower dimensional multiplications, i.e.

1j �i 1j = 1j (9.1.3)

for 0 ≤ i < j < n.

With lax interchange laws, by contrast to the equational case, we need not worry about
an Eckmann-Hilton collapse.

9.1.4. Domain n-semirings. For n = 0, we stipulate that a domain 0-semiring is a
0-diod. For n ≥ 1, a domain n-semiring is an n-dioid (S,+, 0,�i, 1i)0≤i<n equipped with
n domain maps di : S → S, for all 0 ≤ i < n, satisfying the following conditions:

i) (S,+, 0,�i, 1i, di) is a domain semiring,

ii) di+1 ◦ di = di.

For 0 ≤ i < n, the set Sdi = di(S) will be called the i-dimensional domain algebra,
and will be denoted by Si. Furthermore, to distinguish elements of distinct dimensions
0 ≤ i < j < n, we henceforth denote elements of Si by p, q, r, . . . , elements of Sj by
φ, ψ, ξ, . . . , and other elements of S by A,B,C, . . . This notation simplifies the reading
of proofs when elements of different dimensions are interacting. For a natural number
k ≥ 0, the k-fold i-multiplication of an element A of S, for 0 ≤ i < n, is defined by

A0i = 1i, Aki = A�i A(k−1)i .

The axioms ii) and iii) from Section 9.1.1 for n-dioids provide the basic algebraic struc-
ture for reasoning about higher-dimensional rewriting systems. Indeed, the dependencies
between multiplications of different dimensions expressed by the lax interchange laws
capture the lifting of the equational interchange law for n-categories, while the idempo-
tence of i-multiplication for the j-unit expresses completeness of the set of j-dimensional
cells in an n-category with respect to i-composition. In this way, these axioms begin to
capture the higher dimensional character of polygraphs, as is made clear in Section 9.1.19,
in which we provide a model of this structure based on polygraphs. The domain axiom
ii) from Section 9.1.4 further captures characteristics of dimension, which are expressed
abstractly in the following proposition.

9.1.5. Proposition. For n ≥ 1, in any domain n-semiring S, for all 0 ≤ i < j < n,
the following conditions hold:

i) dj ◦ di = di,

ii) dj(1i) = 1i,

iii) 1i ≤ 1j,
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iv) Si ⊆ Sj,

v) (Sj ,+, 0,�i, 1i, di) is a domain sub semiring of (S,+, 0,�i, 1i, di) and di(Sj) = Si,

vi) (Sj ,+, 0,�k, 1k, dk)0≤k≤i is a domain sub (i+1)-semiring of (S,+, 0,�k, 1i, dk)0≤k≤i.

vii) (Si,+, 0,�i, 1i) is a 0-dioid.

Proof. The first identity is proved by a simple induction on axiom ii) in (9.1.4). The
second one quickly follows, since di(1i) = 1i follows from the domain semiring axioms,
and thus dj(1i) = 1i using i). The third identity is again a direct consequence, since
by ii) we know that 1i ∈ Sj , and that 1j is the greatest element of Sj . The fourth one
follows since x ∈ Si if, and only if, di(x) = x, which is equivalent to dj(x) = x by ii).
The fifth identity is verified by noticing that the inclusion Sj ↪→ S is a morphism of
domain semirings with the operation �i. Furthermore, since di(Sj) ⊆ Si and Si ⊆ Sj ,
we have di(Sj) = Si. Noticing that, in fact, Sj ↪→ S is a morphism of domain semirings
with the operation �k for any 0 ≤ k ≤ i gives us vi). The final result follows from basic
properties of domain semirings.

Given an n-semiring S, we denote by Sop the n-semiring in which the order of each
multiplication operation has been reversed. An n-semiring S is a codomain n-semiring
if Sop is a domain n-semiring. The codomain operators are denoted by ri. A modal n-
semiring is an n-semiring with domains and codomains, in which the coherence conditions
di ◦ ri = ri and ri ◦ di = di hold for all 0 ≤ i < n.

9.1.6. Remarks. Section 6.1.22 recalls that the path algebra K(P ) defined as the
power set of 1-cells in the free category generated by a 1-polygraph P = (P0, P1) is a
model of modal 1-semiring. The domain algebra K(P )d is isomorphic to the power set of
P0. As recalled in Section 6.1.3, in the general case of a domain semiring (S,+, 0, ·, 1, d),
the domain algebra Sd forms a bounded distributive lattice with + as join, · as meet, 0
as bottom and 1 as top. It is for this reason that we consider a 0-dioid as a bounded
distributive lattice. Indeed, the idempotence and commutativity of the multiplication
operation simulate the properties of a set of identity 1-cells.

Note also that, in Section 9.1.19, we will construct higher-dimensional path algebras over
n-polygraphs and show that these form models of modal n-semirings. In this case it
makes sense that (Si,+, 0,�i, 1i) is a 0-dioid, since an i-cell f : u→ v of an n-category
C is a 0-cell in the hom-category C(u, v).

9.1.7. Diamond operators. Let S be a modal n-semiring. We introduce forward
and backward i-diamond operators defined via (co-)domain operators in each dimension
by analogy to (6.1.5). For any 0 ≤ i < n, A ∈ S and φ ∈ Si, we define

|A〉i(φ) = di(A�i φ), and 〈A|i(φ) = ri(φ�i A). (9.1.8)

In the absence of antidomains, box operators cannot be expressed in this setting. These
diamond operators have all of the properties recalled in Section 6.1.8 with respect to
i-multiplication and elements of Si.
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9.1.9. p-Boolean domain semirings. For 0 ≤ p < n, a domain n-semiring
(S,+, 0,�i, 1i, di)0≤i<n is called p-Boolean if it is augmented with (p+ 1) maps

(ad i : S → S)0≤i≤p

such that for all 0 ≤ i ≤ p, the following conditions are satisfied:

i) (S,+, 0,�i, 1i, ad i) is a Boolean domain semiring,

ii) di = ad2
i .

By definition, a 0-Boolean domain 1-semiring is a Boolean domain semiring, and by
convention we define a 0-Boolean domain 0-semiring as a Boolean algebra. We define
a p-Boolean codomain semiring as an n-semiring such that its opposite n-semiring is a
p-semiring with antidomains. In this case the anticodomain operators are denoted ar i.
We then obtain a notion of p-Boolean modal n-Kleene algebra. These are modal n-Kleene
algebras which are both p-Boolean with respect to domain and codomain.

9.1.10. Remark. The key difference between modal n-semirings and their p-Boolean
counterparts is that the latter are equipped with negation operations in their lower
dimensions. Indeed, in a p-Boolean modal Kleene algebra K, for every 0 ≤ i ≤ p, the
tuple

(Ki,+, 0,�i, 1i, ad i)
is a Boolean algebra. For this reason, we denote the restriction of ad i to Ki by ¬i.
Furthermore, as recalled in (6.1.8), for 0 ≤ j ≤ p, A ∈ K and φ ∈ Kj we can define
forward (resp. backward) box operators

|A]j(φ) := ¬j(|A〉j(¬jφ)) (resp. [A|j(φ) := ¬j(〈A|j(¬jφ)))

9.1.11. Globular modal n-semiring. A modal semiring S is called globular if the
following globular relations hold for 0 ≤ i < j < n and A,B ∈ K:

di ◦ dj = di and di ◦ rj = di, (9.1.12)
ri ◦ dj = ri, and ri ◦ rj = ri, (9.1.13)

dj(A�i B) = dj(A)�i dj(B), (9.1.14)
rj(A�i B) = rj(A)�i rj(B). (9.1.15)

The intuition here is that A is a collection of globular cells and that for k ∈ {i, j}, dk(A)
(resp. rk(A)) is a collection of globular k-cells each of which is the k-source (resp. k-
target) of some cell belonging to A. In Section 9.1.19 this intuition is elucidated via the
polygraphic model.

An element A of S will be represented graphically by the following diagram with respect
to its i- and j-borders, when i < j:

di(A)

dj(A)

!!

rj(A)

==
⇓ A ri(A)
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Below are graphical representations of i- and j-multiplication with respect to i- and
j-borders. The illustrations underline the fact that multiplication of elements in a Kleene
algebra is equivalent to multiplying their restrictions to the appropriate domain or range,
as below:

A�i B = (A�i ri(A))�i (di(B)�i B) = (A�i di(B))�i (ri(A)�i B),

where we have used properties of domain semirings given in (6.1.3), and that these
restrictions are compatible with the globular relations.

di(A�idi(B))

dj(A�idi(B))

##

rj(A�idi(B))

::
⇓ A�idi(B) ri(A)�idi(B)

dj(ri(A)�iB)

##

rj(ri(A)�iB)

::
⇓ ri(A)�iB ri(ri(A)�iB) ≡ di(A�iB)

dj(A�iB)

��

rj(A�iB)

>>
⇓ A�iB ri(A�iB)

⇓ A�jdj(B)

di(A)�idi(B)

dj(A�jdj(B))

""

rj(A)�jdj(B) //

rj(rj(A)�jB)

<<
ri(A)�iri(B)

⇓ rj(A)�jB

≡ di(A�jB)

dj(A�jB)

%%

rj(A�jB)

99
⇓ A�jB ri(A�jB)

9.1.16. Modal n-Kleene algebra. An n-Kleene algebra is an n-dioid K equipped
with operations (−)∗i : K → K satisfying the following conditions:

i) (K,+, 0,�i, 1i, (−)∗i) is a Kleene algebra for 0 ≤ i < n,

ii) For 0 ≤ i < j < n, the Kleene star operation (−)∗j is a lax morphism with respect
to the i-whiskering of j-dimensional elements on the right (resp. left), that is for all
A ∈ K and φ ∈ Kj ,

φ�i A∗j ≤ (φ�i A)∗j , and (resp. A∗j �i φ ≤ (A�i φ)∗j ). (9.1.17)

Note however, that as a result of the interchange law and the induction axioms, we have
the following result. This appears for the first time in this thesis, as it was noticed when
considering higher quantalic structures, see Chapter 10.

9.1.18. Proposition. Let K be a n-Kleene algebra and A,B ∈ K. Then

(A�j B)∗i ≤ A∗i �j B∗i .
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Proof. We use the induction axiom, see Section 6.1.13, with respect to i-multiplication.
We have

1i + (A�j B)�i (A∗i �j B∗i) ≤ 1i + (A�i A∗i)�j (B �i B∗i)
≤ 1i +A∗i �j B∗i ≤ A∗i �j B∗i ,

where thee first inequality uses the interchange law, the second the unfold law for the
i-star, and finally the fact that 1i ≤ A∗i , B∗i and 1i �j 1i = 1i.

By the induction axiom with respect to the i-multiplication, we obtain the desired
inequality.

As in the case of 1-Kleene algebras, recalled in (6.1.13), the notions of (p-Boolean) n-
semiring structures with (co)domains are compatible with the notion of n-Kleene algebra.
Hence, an n-Kleene algebra with domains (resp. codomains) is a n-Kleene algebra such
that the underlying semiring has domains (resp. codomains). When the underlying
n-semiring is modal, we have a modal n-Kleene algebra. If it is p-Boolean, we have a
p-Boolean modal n-Kleene algebra. We say that these are globular when the underlying
modal n-semiring is globular. We also refer to these structures as higher Kleene algebras,
or HKA for short.

We also remark that this definition of higher Kleene algebras does not necessitate stopping
at a finite number n. Indeed, we could consider ω-Kleene algebras along the same lines
as above. Finally, note that for n = 2, we obtain the standard concurrent Kleene algebra
axioms [75], except that 10 = 11 is normally assumed in this case.

9.1.19. A polygraphic model of higher Kleene algebras. Let P be an n-
polygraph and Γ a cellular extension of the free (n, n − 1)-category P>n . We define
an (n+ 1)-modal Kleene algebra K(P,Γ), the full (n+ 1)-path algebra over P>n [Γ], as
follows:

i) The carrier set of K(P,Γ) is the power set P(P>n [Γ]), whose elements, denoted by
A,B,C, . . . , are sets of (n+ 1)-cells. We denote these (n+ 1)-cells by α, β, γ, . . . in
what follows.

ii) Recall that for α a k-cell, the elements si(α), ti(α), ιlk(α) were defined for 0 ≤ i ≤ k ≤
l ≤ n+ 1 in Sections 5.4.1 and 5.4.6. When k ≤ i, we define si(α) = ti(α) = ιik(α),

iii) Recall that the i-composition of a k-cell α and an l-cell β for 0 ≤ i < k ≤ l ≤ n+ 1
was defined in Sections 5.4.1 and 5.4.6. For 0 ≤ k ≤ l < n+ 1, we define

α ?i β =

{
ιi+1
k (α) ?i β for k ≤ i < l,

ιi+1
k (α) ?i ι

i+1
l (β) for l ≤ i.

iv) For 0 ≤ i < n+ 1, the binary operation �i on K(P,Γ) corresponds to the lifting of
the composition operations of P>n [Γ] to the power-set, i.e. for any A,B ∈ K(P,Γ),

A�i B := {α ?i β | α ∈ A ∧ β ∈ B ∧ ti(α) = si(β)}.
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v) For 0 ≤ i < n+ 1, denote by 1i the set

1i = {ιn+1
i (u) | u ∈ P>n [Γ]i}.

These sets are the units for the multiplication operations, that is we have

A�i 1i = 1i �i A = A.

Furthermore, when i < j, the inclusion 1i ⊆ 1j holds. Indeed, in that case
ιn+1
i (u) = ιn+1

j (ιji (u)) by uniqueness of identity cells, and ιji (u) ∈ P>n (Γ)j is a j-cell.

vi) The addition in K(P,Γ) is given by set union ∪. The ordering is therefore given by
set inclusion.

vii) The i-domain and i-codomain maps di and ri are defined by

di(A) := {ιn+1
i (si(α)) | α ∈ A}, and ri(A) := {ιn+1

i (ti(α)) | α ∈ A}.

These are thus given by lifting the source and target maps of P>n [Γ] to the power
set. The i-antidomain and i-anticodomain maps are then given by complementation
with respect to the set of i-cells:

ad i(A) := 1i\{ιn+1
i (si(α)) | α ∈ A}, and ar i(A) := 1i\{ιn+1

i (ti(α)) | α ∈ A}.

viii) The i-star is given by
A∗i =

⋃
k∈N

Aki ,

where in the above, A0i := 1i and Aki := A�i A(k−1)i .

9.1.20. Proposition ([17]). For any n-polygraph P and cellular extension Γ of P>n ,
K(P,Γ) is an n-Boolean (n+ 1)-modal Kleene algebra.

Additionally, the set Γc of rewriting steps generated by Γ as defined in Remark 5.4.9, is
represented in n-Kleene algebra by

Γc = 1n �n−1 (· · · �2 (12 �1 (11 �0 Γ�0 11)�1 12)�2 · · · )�n−1 1n.

Therefore, α is an (n+ 1)-cell of P>n [Γ] if, and only if, α ∈ (Γc)∗n.

Proof. It is easy to check that, for 0 ≤ i < n+1, the tuple (P((P>n [Γ])n+1),∪, ∅,�i,1i, (−)∗i , di, ri)
is a modal semiring. The fact that it is n-Boolean is a result of it being a power-set
algebra.

Let A,A′, B,B′ ∈ K(P,Γ) and 0 ≤ i < j < n + 1. We want to show that the lax
interchange law holds, i.e.

(A�j B)�i (A′ �j B′) ⊆ (A�i A′)�j (B �i B′). (9.1.21)
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This is the case since, given (n+1)-cells α ∈ A,α′ ∈ A′, β ∈ B, β′ ∈ B′, if (α?jβ)?i(α
′?jβ

′)
is defined, then as a consequence of the exchange law for (n+ 1) categories, we have

(α ?j β) ?i (α′ ?j β
′) = (α ?i α

′) ?j (β ?i β
′) ∈ (A�i A′)�j (B �i B′)

which gives the desired inclusion (9.1.21). This situation is illustrated by the following
diagram:

⇓ α ⇓ α′
· //

��

CC
· //

��

CC
·

⇓ β ⇓ β′

The lax interchange law is not reduced to an equality due to composition of diagrams of
the following shape:

⇓ α ⇓ α′

· //
  

FF
· //

==· //
��

·
⇓ β ⇓ β′

where α ∈ A,α′ ∈ A′, β ∈ B, β′ ∈ B′. Indeed, the composition (α ?i α
′) ?j (β ?i β

′) ∈
(A�iA′)�j (B�iB′) is defined, whereas neither α and β nor α′ and β′ are j-composable,
meaning that in general the inclusion (9.1.21) is strict.

Further, given 0 ≤ i < j < n + 1, we have 1j ⊆ 1j �i 1j . Indeed, for any j-cell α, we
have α ?i ιn+1

i (ti(α)) = α because ιn+1
i (ti(α)) is the (n+ 1)-dimensional identity cell on

the i-dimensional target of α. Furthermore, ιn+1
i (ti(α)) ∈ 1i ⊆ 1j , proving the inclusion.

Thus 1j = 1j �i 1j since (P>n (Γ))j is closed under i-composition.

Given 0 ≤ i < n, we have di+1 ◦di = di since the (i+ 1)-dimensional border of an identity
cell on an i-cell u is u itself. Since di(1i) = 1i, we equally have di+1(1i) = 1i.

The first two globularity axioms are immediate consequences of the globularity conditions
on the source and target maps of P>n (Γ). Furthermore, for 0 ≤ i < j < n + 1 and
A,B ∈ K(P,Γ), we have u ∈ dj(A �i B) if, and only if, there exist α ∈ A and β ∈ B
such that u = sj(α ?i β) = sj(α) ?i sj(β), which is equivalent to u ∈ dj(A) �i dj(B).
Similarly, we show that rj(A ?i B) = rj(A)�i rj(B).

Finally, we consider the Kleene star axioms. It is easy to check that, given a family
(Bk)k∈I of elements of K(P,Γ) and another element A, we have, for all 0 ≤ i < n+ 1,

A�i

(⋃
k∈I

Bk

)
=
⋃
k∈I

(A�i Bk) and

(⋃
k∈I

Bk

)
�i A =

⋃
k∈I

(Bk �i A) .

It then follows by routine calculations that the element A∗i defined above satisfies, for
each i, the Kleene star axioms, recalled in (6.1.13). It only remains to check that for
0 ≤ i < j < n + 1, the j-star is a lax morphism for i-whiskering of j-dimensional
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elements on the left (the right case being symmetric), that is φ�i A∗j ⊆ (φ�i A)∗j for
φ ∈ K(P,Γ)j and A ∈ K(P,Γ). By construction, K(P,Γ)j is in bijective correspondence
with (P>n (Γ))j , the set of j-cells of P>n [Γ]. Considering such elements φ and A, we have
β ∈ φ�i A∗j in the following two cases:

i) There exist u ∈ φ and α ∈ A+j , where we recall that A+j := A�j A∗j is the Kleene
plus operation, such that β = u ?i α. Since α ∈ A+j , there exist a k > 0 and cells
α1, α2, . . . , αk ∈ A such that

α = α1 ?j α2 ?j · · · ?j αk.

Since i < j, the following is a consequence of the exchange law for n-categories:

u ?i (α1 ?j α2 ?j · · · ?j αk) = (u ?i α1) ?j (u ?i α2) ?j · · · ?j (u ?i αk),

and thus we have β ∈ (φ�i A)+j .

ii) There exist u ∈ φ, and v ∈ (P>n (Γ))j with v 6∈ A such that β = u ?i v. This is due
to the fact that A∗j = 1j +A+j . In that case, we have β ∈ (P>n (Γ))j , i.e. β ∈ 1j .
By the unfold axiom, we have 1j ⊆ (φ�i A)∗j , and thus β ∈ (φ�i A)∗j .

The fact that α is an (n+ 1)-cell of P>n [Γ] if, and only if, α ∈ (Γc)∗n , follows by definition
of Γc and the fact that any (n+1)-cell of P>n [Γ] is an n-composition of rewriting steps.

9.2. A coherent Church-Rosser theorem

Let K be a globular n-modal Kleene algebra and 0 ≤ i < j < n. Before defining fillers
in globular modal n-Kleene algebras, we first recall the intuition behind the forward
diamond operators, defined in Section 9.1.7. Given A ∈ K and φ, φ′ ∈ Kj , recall that by
definition

|A〉j(φ) ≥ φ′ = dj(A�j φ) ≥ φ′.

In terms of quantification over sets of cells, as for example in the polygraphic model,
this signifies that for every element u of φ′, there exist elements v of φ and α of A such
that the j-source (resp. j-target) of α is u (resp. v). This observation motivates the
definitions in the following paragraph.

9.2.1. Confluence fillers. Given elements φ and ψ of Kj , we say that an element
A in K is a

i) local i-confluence filler for (φ, ψ) if

|A〉j(ψ∗i �i φ∗i) ≥ φ�i ψ,

ii) left (resp. right) semi-i-confluence filler for (φ, ψ) if

|A〉j(ψ∗i �i φ∗i) ≥ φ�i ψ∗i , (resp. |A〉j(ψ∗i �i φ∗i) ≥ φ∗i �i ψ ),
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iii) i-confluence filler for (φ, ψ) if

|A〉j(ψ∗i �i φ∗i) ≥ φ∗i �i ψ∗i ,

iv) i-Church-Rosser filler for (φ, ψ) if

|A〉j(ψ∗i �i φ∗i) ≥ (ψ + φ)∗i .

In any n-Kleene algebra, the following inequalities hold:

(ψ + φ)∗i ≥ φ∗i �i ψ∗i ≥ φ�i ψ.

We may therefore deduce that an i-Church-Rosser filler for (φ, ψ) is an i-confluence
filler for (φ, ψ) and that an i-confluence filler for (φ, ψ) is a local i-confluence filler for
(φ, ψ).

9.2.2. Remarks. Conditions on the domain and codomain in the above definitions
imply an i-dimensional globular character of the pair (φ, ψ) in the sense that we have
the relation

|φ∗i �i ψ∗i〉i(p) ≤ |ψ∗i �i φ∗i〉i(p)

for all p ∈ Ki. Indeed, writing A′ = A�j (ψ∗i �i φ∗i), we have

|φ∗i �i ψ∗i〉i(p) = di(φ
∗i �i ψ∗i �i p) ≤ di(dj(A

′)�i p)
= di(dj(A

′ �i p))
= di(rj(A

′ �i p))
= di(rj(A

′)�i p)
≤ di((ψ

∗i �i φ∗i)�i p) = |ψ∗i �i φ∗i〉i(p),

where the first step holds by definition of diamonds, the second by the fact that A is an
i-confluence filler and by monotonicity of di, the third, fourth and fifth by the globularity
relations (9.1.14),(9.1.12) and (9.1.15) respectively. The final inequality follows because
d(p · x) = p · d(x) holds in modal Kleene algebra (see the end of Section 6.1.3). In the
case of codomains, its dual implies that

rj(A
′) = rj(A�j (ψ∗i �i φ∗i)) = rj(A)�j rj(ψ∗i �i φ∗i) ≤ rj(ψ

∗i �i φ∗i).

The final step is again by definition of the diamond operators. Similar results hold in the
case of local and semi-confluence fillers. Thus, φ and ψ commute modally (resp. locally
modally) with respect to i-multiplication. For this reason, the confluence filler (resp. local
confluence filler) defined in (9.2.1) can be represented graphically as follows

φ∗i

{{

ψ∗i

##A��

ψ∗i

��

##

φ∗i

��

{{

φ

{{

ψ

##A��

ψ∗i

��

##

φ∗i

��

{{
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9.2.3. Whiskers. Let K be a globular modal n-Kleene algebra. Given 0 ≤ i < j < n
and φ ∈ Kj , the right (resp. left) i-whiskering of an element A ∈ K by φ is the
element

A�i φ (resp. φ�i A)

In what follows, we list properties of whiskering and define completions.

i) Firstly, it holds that i-whiskering by j-dimensional cells semi-commutes with j-
modalities. Indeed, for all A ∈ K and 0 ≤ i < j < n and all φ, ψ, γ, we have

φ�i 〈A|j(γ)�i ψ = 〈φ�i A�i ψ|j(φ�i γ �i ψ). (9.2.4)

Indeed, we have

φ�i |A〉j(γ) = dj(φ)�i dj(A�j γ)

= dj((φ�j φ)�i (A�j γ))

≤ dj((φ�i A)�j (φ�i γ)) = |φ�i A〉j(φ�i γ),

where the first equality is by invariance of dj on j-dimensional elements, and by
definition of j-diamonds. The second is given by globularity (9.1.14) and the
inequality step by the interchange law (9.1.2) and monotonicity of domain operators.
The final equality is again by definition of the j-diamond.

A strict commutation may be derived in certain cases, as explained in [17]. Indeed, let
A ∈ K be a (local) i-confluence filler for (φ, ψ) and 0 ≤ i < j < n. If φ′, ψ′, γ ∈ Kj

are such that φ′ ≤ φ, ψ′ ≤ ψ, and dj(A) ≤ γ, we have:

φ′ �i 〈A|j(γ)�i ψ′ = 〈φ′ �i A�i ψ′|j(φ�i γ �i ψ). (9.2.5)

ii) Secondly, we define completions of elements by whiskering. Let A be an i-confluence
filler of a pair (φ, ψ) of elements in Kj . The j-dimensional i-whiskering of A is the
following element of K:

(φ+ ψ)∗i �i A�i (φ+ ψ)∗i . (9.2.6)

The j-star of this element is called the i-whiskered j-completion of A.

iii) Finally, we have that the i-whiskered j-completion of a confluence filler A, which in
the following paragraph we denote by Â, absorbs whiskers, i.e. for any ξ ≤ (φ+ψ)∗i

ξ �i Â∗j ≤ Â∗j and Â∗j �i ξ ≤ Â∗j . (9.2.7)

Indeed, by definition of Â, we have

ξ �i Â ≤ Â ≥ Â�i ξ

for any ξ ≤ (φ+ ψ)∗i . Using the fact that (−)∗j is a lax morphism with respect to
i-whiskering by j-dimensional elements, see Section 6.1.13, we deduce

ξ �i Â∗j ≤ (ξ �i Â)∗j ≤ Â∗j ,
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where the last inequality holds by monotonicity of (−)∗j . A similar proof shows
that Â∗j �i ξ ≤ Â∗j .

9.2.8. Proposition (Coherent Church-Rosser theorem in globular n-MKA (by
induction)). Let K be a globular modal n-Kleene algebra and 0 ≤ i < j < n. Given
φ, ψ ∈ Kj, an i-confluence filler A of (φ, ψ) and any natural number k ≥ 0, there exists
an Ak ≤ Â∗j such that

i) rj(Ak) ≤ ψ∗iφ∗i ,

ii) dj(Ak) ≥ (φ+ ψ)ki ,

where Â is the j-dimensional i-whiskering of A.

Proof. In this proof, juxtaposition of elements denotes i-multiplication. We reason by
induction on k ≥ 0. For k = 0, we may take A0 = 1i. Indeed,

1i ≤ 1j ≤ Â∗j .

Furthermore, we have dj(A0) = 1i = (φ + ψ)0i and rj(A0) = 1i ≤ ψ∗iφ∗i . Supposing
that Ak−1 is constructed, we set

Ak = ((φ+ ψ)Ak−1)�j (A′φ∗i),

where A′ = A�j (ψ∗iφ∗i). We first show that dj(Ak) ≥ (φ+ ψ)ki as follows

dj(Ak) = dj(((φ+ ψ)Ak−1)�j (A′φ∗i)),

= dj(((φ+ ψ)Ak−1)�j dj(A′φ∗i)),
= dj(((φ+ ψ)Ak−1)�j dj(A′)φ∗i),
≥ dj(((φ+ ψ)Ak−1)�j φ∗iψ∗iφ∗i),
= dj((φ+ ψ)Ak−1),

= (φ+ ψ)dj(Ak−1),

= (φ+ ψ)(φ+ ψ)(k−1)i ,

= (φ+ ψ)ki ,

·
(φ+ψ)

//

ψ∗i

��

· oo
(φ+ψ)k−1

//

ψ∗i

��

A′φ∗i

(φ+ ψ)Ak−1

·
CC

φ∗i

·
CC

φ∗i

·
where the first step is given by definition of Ak, the second by axiom ii) from (6.1.3),
the third by globularity (9.1.14). The inequality in the fourth step is by hypothesis that
A is an i-confluence filler, and the fifth is a consequence of the fact that

((φ+ ψ)Ak−1)�1 (φ∗iψ∗iφ∗i) = (φ+ ψ)Ak−1,

which is in turn a consequence of the following:

rj((φ+ ψ)Ak−1) = (φ+ ψ)rj(Ak−1) ≤ φ∗iψ∗iφ∗i .

The sixth step is again a consequence of globularity (9.1.14), the seventh follows from the
induction hypothesis, and the last equality is by definition of the k-fold i-multiplication.
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Now we show rj(Ak) ≤ ψ∗iφ∗i :

rj(Ak) = rj(((φ+ ψ)Ak−1)�j (A′φ∗i))

= rj(rj((φ+ ψ)Ak−1)�j (A′φ∗i))

≤ rj((φ+ ψ)ψ∗iφ∗i �j (A′φ∗i))

≤ rj((φ
∗iψ∗iφ∗i)�j (A′φ∗i))

= rj(dj(A
′φ∗i)�j (A′φ∗i))

= rj(A
′)φ∗i

≤ ψ∗iφ∗iφ∗i

= ψ∗iφ∗i .

The first equality holds by definition of Ak, the second by axiom ii) from Section 6.1.3 (for
codomains), the third by the induction hypothesis, the fourth by φ ≤ φ∗i and ψψ∗i = ψ∗i .
The fifth step holds since A is an i-confluence filler, the sixth by the fact that d(x) ·x = x,
a consequence of axiom i) from Section 6.1.3. Finally, as recalled in Section 9.2.2,

rj(A
′) = rj(A�j (ψ∗i �i φ∗i)) = rj(A)�j rj(ψ∗i �i φ∗i) ≤ rj(ψ

∗i �i φ∗i),

which gives step seven since ψ∗i �i φ∗i ∈ Kj . The final step is due to φ∗i �i φ∗i = φ∗i , a
consequence of the Kleene star axioms.

To conclude, we must also show that Ak ≤ Â∗j . By whisker absorption, described
in (9.2.3), and the fact that A′ ≤ A ≤ Â, we have

A′φ∗i ≤ Âφ∗i = Â, and (φ+ φ)Ak−1 ≤ (φ+ ψ)Â∗j ≤ Â∗j .

Thus, Ak = ((φ+ψ)Ak−1)�j (Aφ∗i) ≤ Â∗j �j Â∗j = Â∗j , which completes the proof.

We now reprove this theorem using the implicit induction of Kleene algebra.

9.2.9. Theorem (Coherent Church-Rosser in globular n-MKA). Let K be a
globular n-modal Kleene algebra and 0 ≤ i < j < n. Given φ, ψ ∈ Kj and an i-confluence
filler A ∈ K of (φ, ψ), we have

|Â∗j 〉j(ψ∗iφ∗i) ≥ (φ+ ψ)∗i ,

where Â is the j-dimensional i-whiskering of A. Thus Â∗j is an i-Church-Rosser filler
for (φ, ψ).

Proof. As in the previous proof, i-multiplication will be denoted by juxtaposition. Let
φ, ψ be in Kj , for 0 < j < n, and A in K be an i-confluence filler of (φ, ψ), with 0 ≤ i < j.
By the left i-star induction axiom, see Section 6.1.13, we have

1i + (φ+ ψ)|Â∗j 〉j(ψ∗iφ∗i) ≤ |Â∗j 〉j(ψ∗iφ∗i) ⇒ (φ+ ψ)∗i ≤ |Â∗j 〉j(ψ∗iφ∗i)

The inequality 1i ≤ ψ∗iφ∗i ≤ |Â∗j 〉j(ψ∗iφ∗i) holds. Indeed, by the unfold axiom from
Section 6.1.13, we have 1i ≤ ψ∗i , 1i ≤ φ∗i , giving the first inequality, and 1j ≤ Â∗j . The
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latter implies that idSdj
= |1j〉j ≤ |Â∗j 〉j , which gives ψ∗iφ∗i ≤ |Â∗j 〉j(ψ∗iφ∗i). It then

remains to show that

(φ+ ψ)|Â∗j 〉j(ψ∗iφ∗i) ≤ |Â∗j 〉j(ψ∗iφ∗i).

By distributivity, we may prove this for each of the summands:

− In the case of whiskering by φ on the left:

φ|Â∗j 〉j(ψ∗iφ∗i) ≤ |φÂ∗j 〉j(φψ∗iφ∗i)
≤ |φÂ∗j 〉j(|A〉j(ψ∗iφ∗i)φ∗i)
≤ |φÂ∗j 〉j(|Aφ∗i〉j(ψ∗iφ∗iφ∗i))
≤ |φÂ∗j �j Aφ∗i〉j(ψ∗iφ∗i)
≤ |Â∗j �j Â〉j(ψ∗iφ∗i)
≤ |Â∗j 〉j(ψ∗iφ∗i)

· φ
//

ψ∗i

  

· oo
(φ+ψ)∗i

//

ψ∗i

  
Aφ∗i

φÂ∗j

·>>

φ∗i

·??

φ∗i

·
The first step is given by whiskering properties from (9.2.3), the second by the
hypothesis that A is an i-confluence filler and that φψ∗i ≤ φ∗iψ∗i . The third step
is again by whiskering, and the fourth follows by definition of diamonds and axiom
ii) from (6.1.3). The fifth follows by whisker absorption, (9.2.3), and the last step
follows from the unfold axiom from (6.1.13), since it implies that x · x∗ ≤ x∗.

− In the case of whiskering by ψ on the right:

ψ|Â∗j 〉j(ψ∗iφ∗i) ≤ |ψÂ∗j 〉j(ψψ∗iφ∗i)
≤ |ψÂ∗j 〉j(ψ∗iφ∗i)
≤ |Â∗j 〉j(ψ∗iφ∗i).

· ψ
//

ψ∗i

**

· oo
(φ+ψ)∗i

//

ψ∗i

  

1j ψÂ∗j

·>>

φ∗i

·

·

The first step is again by whiskering properties from Section 9.2.3, the second by the fact
that ψψ∗i ≤ ψ∗i which as explained above is a consequence of the unfold axiom recalled
in Section 6.1.13. Finally, whisker absorption justifies the last inequality.

9.2.10. Remarks. Note that in Theorem 9.2.8, the elementsAk verify |Ak〉j(ψ∗iφ∗i) ≥
(φ + ψ)ki , meaning that scanning backward along Ak from ψ∗iφ∗i , we see at least all
of the "zig-zags" in φ and ψ of length k, whereas in Theorem 9.2.9, the inequality
|Â∗j 〉j(ψ∗iφ∗i) ≥ (φ+ ψ)∗i means that scanning back from ψ∗iφ∗i , we see at least all of
the zig-zags in φ and ψ of any length. However, the elements Ak from Theorem 9.2.8
satisfy in addition
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〈Ak|j((φ+ ψ)ki) ≤ ψ∗iφ∗i .

This formulation is of interest, since it coincides with the intuition of paving from zigzags
(φ+ ψ)ki to the confluences ψ∗iφ∗i . However, this sort of inequality cannot be expected
of the j-dimensional i-completion of A, since in general, using the path algebra intuition,
Â∗j contains cells which go from zigzags to zigzags. In conclusion, the fact that the
diamonds scan all possible future or past states means that we must formulate as in
Theorem 9.2.9 when considering completions, or construct the paving elements as in
Theorem 9.2.8.

9.2.11. Corollary. Let K be a globular modal n-Kleene algebra. Given φ, ψ ∈ Kj, for
i < j < n, for any semi-i-confluence filler A ∈ K we have

|Â∗j 〉j(ψ∗iφ∗i) ≥ (φ+ ψ)∗i ,

where Â is the j-dimensional i-whiskering of A.

Proof. In the case of a left semi-confluence filler, the proof is identical. If A is a right semi-
confluence filler, we use the right i-star axiom and the proof is given by symmetry.

9.3. Newman’s lemma in globular modal
n-Kleene algebra

9.3.1. Termination in n-semirings. We define the notion of termination, or
Noethericity, in a modal n-semiring K as an extension of the notion of termination in
modal Kleene algebras, recalled in Section 6.2. Given 0 ≤ i < j < n, an element φ ∈ Kj

is said to be i-Noetherian or i-terminating if

p ≤ |φ〉ip⇒ p ≤ 0

holds for all p ∈ Ki. The set of i-Noetherian elements of K is denoted by Ni(K). When
K is a modal p-Boolean semiring, we recall that as a consequence of the adjunction
between diamonds and boxes, see Section 6.1.8, we obtain an equivalent formulation of
Noethericity in terms of the forward box operator:

φ ∈ Ni(K) ⇐⇒ ∀p ∈ Ki, |φ]ip ≤ p⇒ 1i ≤ p.

We also define a notion of well-foundedness; φ is said to be i-well-founded if it is
i-Noetherian in the opposite n-semiring of K.

9.3.2. Theorem (Coherent Newman’s lemma for globular p-Boolean MKA).
Let K be a globular p-Boolean modal Kleene algebra, and 0 ≤ i ≤ p < j < n, such that

i) (Ki,+, 0,�i, 1i,¬i) is a complete Boolean algebra,
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ii) Kj is continuous with respect to i-restriction, i.e. for all ψ,ψ′ ∈ Kj and every
family (pα)α∈I of elements of Ki such that supI(pα) exists, we have

ψ �i supI(pα)�i ψ′ = supI(ψ �i pα �i ψ′).

Let ψ ∈ Kj be i-Noetherian and φ ∈ Kj i-well-founded. If A is a local i-confluence filler
for (φ, ψ), then

|Â∗j 〉j(ψ∗iφ∗i) ≥ φ∗iψ∗i ,

i.e. Â∗j is a confluence filler for (φ, ψ).

Proof. We denote i-multiplication by juxtaposition. First, we define a predicate expressing
restricted j-paving. Given p ∈ Ki, let

RP (p) ⇔ |Â∗1〉j(ψ∗iφ∗i) ≥ φ∗ipψ∗i .

By completeness of Ki, we may set r := sup{p | RP (p)}. By continuity of i-restriction,
we may infer RP (r). Furthermore, by downward closure of RP , we have the following
equivalence:

RP (p) ⇐⇒ p ≤ r.

This in turn allows us to make the following deductions:

∀p. (RP (|φ〉ip) ∧RP (〈ψ|ip)⇒ RP (p))⇔ ∀p. (|φ〉ip ≤ r ∧ 〈ψ|ip ≤ r ⇒ p ≤ r)
⇔ ∀p. (p ≤ [φ|ir ∧ p ≤ |ψ]ir ⇒ p ≤ r)
⇔ [φ|ir ≤ r ∧ |ψ]ir ≤ r

Thus, it suffices to show ∀p. (RP (|φ〉ip)∧RP (〈ψ|ip)⇒ RP (p)) in order to conclude that
r = 1i, by Noethericity (resp. well-foundedness) of ψ (resp. φ).

Let p ∈ Ki, set |φ〉i(p) = pφ and 〈ψ|i(p) = pψ and suppose that RP (pφ) and RP (pψ)
hold. Note that we have

φp = di(φp)φp = |φ〉i(p)φp ≤ pφφ,

since d(x)x = x by axiom i) from Section 6.1.3 and p ≤ 1i. We have a similar inequality for
ψ, that is pψ ≤ ψpψ. These inequalities, along with the unfold axioms from Section 6.1.13,

give φ∗ipψ∗i ≤ φ∗ip+ φ∗iφpψψ∗i + pψ∗i

≤ φ∗ip+ φ∗ipφφψpψψ
∗i + pψ∗i .

p

·

φ∗i

HH
p

ψ
��

φ
HH

ψ∗i

��

·

φ∗i
II

·

p

ψ∗i

��

·

The outermost summands are below |Â∗j 〉j(ψ∗iφ∗i). Indeed, idSj = |1j〉j ≤ |Â∗j 〉j since
1j ≤ Â∗j , p ≤ 1i and φ∗i , ψ∗i ≤ ψ∗iφ∗i .
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For the middle summand, we calculate

φ∗ipφφψpψψ
∗i ≤ φ∗ipφ|A〉j(ψ∗iφ∗i)pψψ∗i

≤ |φ∗ipφApψψ∗i〉j(φ∗ipφψ∗iφ∗ipψψ∗i)
≤ |φ∗ipφÂpψψ∗i〉(|Â∗j 〉j(ψ∗iφ∗i)φ∗ipψψ∗i)
≤ |Â〉(|Â∗jφ∗ipψψ∗i〉j(ψ∗iφ∗ipψψ∗i))
≤ |Â�j Â∗jφ∗ipψψ∗i〉j(ψ∗iφ∗ipψψ∗i)
≤ |Â�j Â∗j 〉j(ψ∗iφ∗ipψψ∗i),

p

ψ

��

·

φ
BB

ψ∗i

��

Â ·
ψ∗i

��

·

φ∗i
DD

ψ∗i
��

Â∗j ·

φ∗i

FF

·

·
φ∗i

BB

The first step is by the local i-confluence filler hypothesis, the second by whiskering
properties from Section 9.2.3 and the third by RP (pφ). The fourth step is again by
whiskering properties, and the fifth follows from axiom ii) in Section 6.1.3 and the
definition of diamond operators. The final step is by whisker absoprtion, see Section 9.2.3.
By similar arguments, we have

|Â�j Â∗j 〉j(ψ∗iφ∗ipψψ∗i) ≤ |Â�j Â∗j 〉j(ψ∗i |Â∗j 〉j(ψ∗iφ∗i))
≤ |Â�j Â∗j 〉j(|ψ∗iÂ∗j 〉j(ψ∗iφ∗i))
≤ |Â�j Â∗j �j ψ∗iÂ∗j 〉j(ψ∗iφ∗i)
≤ |Â�j Â∗j �j Â∗j 〉j(ψ∗iφ∗i)

p

ψ

��

·

φ
??

ψ∗i

��

Â ·
ψ∗i

��

·

φ∗i
AA

ψ∗i
��

Â∗j ·

φ∗i

CC

Â∗j

·

·
φ∗i

??

ψ∗i
  

·
φ∗i

DD

·
φ∗i

AA

Indeed, the first step follows from RP (pψ), and the second by whiskering properties. The
third step follows from axiom ii) in Section 6.1.3 and the definition of diamond operators
as in the preceding calculation. The final step follows from whisker absorption. Finally,
we observe that

Â�j Â∗j �j Â∗j ≤ Â∗j ,

and thus by monotonicity of the diamond operator we may conclude that

φ∗ipφφψpψψ
∗i ≤ |Â∗j 〉j(ψ∗iφ∗i).

We have thereby shown that ∀p(RP (pφ) ∧ RP (pψ) ⇒ RP (p)) and thus that r = 1i,
concluding the proof.

9.3.3. Remark. Similarly to the discussion from Remark 7.1.18 in the context of
polygraphs, we remark here that the proofs of Theorems 9.2.9 and 9.3.2 are similar to
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those of the analogous 1-dimensional results for modal Kleene algebra found in [28, 109].
Indeed, if we look exclusively at the induction axioms and deductions applied to j-
dimensional cells, we obtain the same proof structures as in the case of modal Kleene
algebras. This indicates that the structure of globular modal n-Kleene algebra is a
natural higher dimensional generalisation of modal Kleene algebras in which proofs of
coherent confluence may be calculated. The consistency of the abstract, algebraic results
from the previous sections with the point-wise, polygraphic results from Section 8.1.1
are made explicit in Section 9.5.

9.4. Abstract Coherence in higher Kleene
algebras

Just as in Section 7.3.4 when we looked at the abstract coherence theorem for n-polygraphs,
we will see in this section that the abstract coherence theorem for higher Kleene algebra
is a consequence of the two dimensional case. We fix a p-Boolean n-Kleene algebra
K.

9.4.1. Sections, skeleta and strategies in HKA. In Section 8.4.1, we defined
sections, skeleta and strategies in the context of Boolean MKA. When a n-Kleene algebra
is p-Boolean, we know that each Kj , for j ≤ p, is a Boolean MKA with respect to
(j − 1)-operations. For i ≤ j, we therefore also have Boolean complementation on Ki by
restriction. Let x ∈ Kj .

i) The i-equivalence generated by x is the element x>i := (x+ x)∗i . For p ∈ Ki, the
x-saturation of p is the element |x>i〉i(p) ∈ Ki.

ii) An i-covering set for x is an element q ∈ Ki such that |x>i〉i(q) ≥ 1i, i.e. whose
x-saturation is total. An i-section of x is a minimal i-covering set.

iii) A wide i-sub of x is an elementw ∈ Kj such that w ≤ x and |w〉i = |x〉i and
〈w|i = 〈x|i. A i-skeleton of x is a minimal wide sub.

iv) Given an i-section s of x, an i-strategy for x relative to s is an i-skeleton σ of x>i�i s
such that s�i σ ≤ s.

9.4.2. Theorem (Coherent normalising Newman’s lemma [16]). Let i < j < n
and p such that i ≤ p. Let K be a p-Boolean globular n-Kleene algebra such that

i) (Ki,+, 0,�i, 1i,¬i) is a complete Boolean algebra,

ii) Kj is continuous with respect to i-restriction, that is for all ψ,ψ′ ∈ Kj and (pα)α ⊆
Ki we have ψ �i ∨pα �i ψ′ = ∨ (ψ �i pα �i ψ′).

Let φ ∈ Kj be convergent and σ be a skeleton of exh(φ)j. If A is a local confluence filler
for (φ, φ), then |Â∗j 〉j(σ �i σ) ≥ φ∗i �i φ∗i .
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Proof. The proof is identical to that of Theorem 8.5.1 in which 0-operations (resp. 1-
operations) are replaced by i-operations (resp. j-operations). This is because

(K,+, 0,�i, 1i, di, ri,¬i,�j , 1j , dj , rj)

is a 0-Boolean globular 2-Kleene algebra.

9.4.3. Theorem (Abstract coherence theorem for HKA [16]). Let K be a p-
Boolean globular n-Kleene algebra satisfying the additional hypotheses in Theorem 9.4.2
and φ ∈ Kj convergent. Given a normalisation strategy σ for φ and a local confluence
filler A for (φ, φ), we have

|Â∗j 〉j(σ �i σ) ≥ φ>i = (φ+ φ)∗i .

Proof. As above, the proof is identical to that of Theorem 8.5.2 in which 0-operations
(resp. 1-operations) are replaced by i-operations (resp. j-operations).

9.5. Polygraphic coherence via HKA

In this section we interpret the theorems from the preceding section in terms of polygraphs.
We fix an n-polygraph P and a cellular extension Γ of P>n .

9.5.1. Converses. Recall from Section 6.1.17 that a Kleene algebra with converse
is a Kleene algebra K equipped with an involution (−) : K → K that distributes
through addition, acts contravariantly on multiplication, commutes with the Kleene star,
i.e.

(a+ b) = a+ b, (a · b) = b · a, (9.5.1)

(a∗) = (a)∗, (a) = a, (9.5.2)

and satisfies the inequality a ≤ aaa, in the case of a Gelfand converse, or the inequality
d(x) ≤ xx in the case of a contracting converse. When the underlying Kleene algebra is
a modal Kleene algebra, we say that it is a modal Kleene algebra with converse.

9.5.2. (n, p)-Kleene algebra. A modal Gelfand (resp. contracting) (n, p)-Kleene

algebra K is a modal n-Kleene algebra equipped with operations (−)
j

: Kj+1 → Kj+1 for
p ≤ j < n− 1 and an operation (−)

n−1
: K → K, satisfying the axioms listed in (9.5.1)

and the Gelfand inequality (6.1.19) (resp. the contraction inequality (6.1.20)) relative to
the appropriate multiplication operation, i.e. (−)

j
is a converse for the j-multiplication.

Note that for φ ∈ Ki with i < j, we have φ j = φ. This is a consequence of the fact that
for i ≤ j, �j is idempotent for elements of Ki.
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9.5.3. Conversion in K(P,Γ). The modal (n + 1)-Kleene algebra K(P,Γ), as
defined in Section 9.1.19, is a modal (n + 1, n − 1)-Kleene algebra. Indeed, for any
φ ∈ K(P,Γ)n and A ∈ K, let

φ
n−1

:= { u− | u ∈ φ} and A
n

= { α− | α ∈ A}.

This operation is well defined in the following sense: If φ ∈ K(P,Γ)n, then φ is a set of
cells of dimension less than or equal to n. Given a cell v of dimension i < n, its n-inverse
is itself, since we consider it as an identity. Given a cell u of dimension n, we know that
u− is well defined since if u ∈ P>n then u− ∈ P>n . Similarly for the case of (−)

n
.

9.5.4. Γ-coherence properties as fillers. Recall that Γ and P ∗n are themselves
elements of K(P,Γ), and that in Proposition 9.1.20 we observed that

Γc = (1n �n−1 (· · · �2 (12 �1 (11 �0 Γ�0 11)�1 12)�2 · · · )�n−1 1n) ,

where Γc is the set of cells of Γ in context. In the following, we will denote by P cn the set
of rewriting steps generated by Pn, which can be expressed in K(P,Γ) as

P cn = (1n−1 �n−2 (· · · �2 (12 �1 (11 �0 Pn �0 11)�1 12)�2 · · · )�n−2 1n−1) .

The construction of K(P,Γ) is compatible with Γ-coherence properties in the following
sense:

9.5.5. Proposition. With Γ′ := (Γc)∗n, the following equivalences hold:

i) Γ is a (local) confluence filler for P ⇐⇒ Γ′ is a (local) (n− 1)-confluence filler
for ((P cn)

n−1
, P cn),

ii) Γ is a Church-Rosser filler for P ⇐⇒ Γ′ is an (n− 1)-Church-Rosser filler for
((P cn)

n−1
, P cn).

Proof. Let us prove the equivalence in the case of (global) confluence.

Suppose that Γ is a confluence filler for P . An element f− ?n−1 g ∈ (P cn)
n−1 �n−1 P

c
n

corresponds to a branching (f, g). By hypothesis, there exists an α ∈ P>n [Γ] such that
sn(α) = f− ?n−1 g and α is an n-composition of rewriting steps so α ∈ Γ′. Furthermore,
the n-target of α is a confluence, so α ∈ Γ′ �n (P cn �n−1 (P cn)

n−1
). In equations, this

means that

(P cn)
n−1 �n−1 P

c
n ⊆ dn

(
Γ′ �n (P cn �n−1 (P cn)

n−1
)
)

= |Γ′〉n
(
P cn �n−1 (P cn)

n−1
)
,

i.e. Γ′ is an (n− 1)-confluence filler for
(

(P cn)
n−1

, P cn

)
.

Conversely, if Γ′ is an (n − 1)-confluence filler for
(

(P cn)
n−1

, P cn

)
, then given some

branching (f, g), we know that f− ?n−1 g ∈ diΓ
′ �n (P cn �n−1 (P cn)

n−1
). This means

there exists some cell α ∈ Γ′ with n-source f− ?n−1 g and whose n-target is a confluence.
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Since α ∈ Γ′, we know that it is a composition of rewriting steps of Γ. With this we
conclude that P is Γ-confluent.

The other cases are similarly deduced.

Due to this compatibility, we may deduce the following theorems, that is Theorems 8.1.4
and 8.1.7, as corollaries of our main results:

9.5.6. Theorem (Church Rosser for n-polygraphs). Let P be an n-polygraph and
Γ a cellular extension of P>n . Then Γ is a confluence filler for P if, and only if, Γ is a
Church-Rosser filler for P .

Proof. Suppose first that Γ is a confluence filler for P . Using the result and notations
from Proposition 9.5.5, we know that Γ′ is an (n− 1)-confluence filler for ((P cn)

n−1
, P cn).

We apply Theorem 9.2.9 to K(P,Γ) for i = n− 1 and j = n, obtaining that Γ̂′
∗n is an

(n− 1)-Church-Rosser filler for ((P cn)
n−1

, P cn). Observing that (P cn + (P cn)
n−1

)∗n−1 = P>n ,
we have

Γ̂′
∗n

=
(
P>n �n−1 (Γc)∗n �n−1 P

>
n

)∗n
⊆
(

(P>n �n−1 Γc �n−1 P
>
n )∗n

)∗n
= Γ′,

where the first step is by definition, the second uses the fact that the n-star is a lax
morphism for (n− 1)-multiplication, see Section 9.1.16, and the third uses the fact that
Γc absorbs whiskers and that (A∗n)∗n = A∗n . Since additionally, Γ′ ⊆ Γ̂′

∗n , Γ′ is an
(n − 1)-Church-Rosser filler for ((P cn)

n−1
, P cn). By Proposition 9.5.5, this allows us to

conclude that Γ is a Church-Rosser filler for P .

For the trivial direction, suppose that Γ is a Church-Rosser filler for P . We deduce
by Proposition 9.5.5 that Γ′ is an (n − 1)-Church-Rosser filler for ((P cn)

n−1
, P cn). As

pointed out at the end of Section 9.2.1, this means that Γ′ is an i-confluence filler for
((P cn)

n−1
, P cn), by which we conclude that Γ is a confluence filler for P .

9.5.7. Theorem (Newman for n-polygraphs). Let P be a terminating n-polygraph
and Γ a cellular extension of P>n . Then Γ is a local confluence filler for P if, and only if,
Γ is a confluence filler for P .

Proof. Suppose that Γ is a local confluence filler for P . Using the result and notations from
Proposition 9.5.5, we know that Γ′ is an (n− 1)-local confluence filler for ((P cn)

n−1
, P cn).

We apply Theorem 9.3.2 to K(P,Γ) for i = n− 1 and j = n, obtaining that Γ̂′
∗n is an

(n− 1)-confluence filler for ((P cn)
n−1

, P cn). As in the proof of the previous theorem, we
have that Γ̂′

∗n
= Γ′, allowing us to conclude that Γ is a confluence filler for P , again by

Proposition 9.5.5.

For the trivial direction, suppose that Γ is a confluence filler for P . As above, we deduce
that Γ′ is an (n− 1)-Church-Rosser filler for ((P cn)

n−1
, P cn). Again, as pointed out at in

Section 9.2.1, this means that Γ′ is a local i-confluence filler for ((P cn)
n−1

, P cn), by which
we conclude that Γ is a local confluence filler for P via Proposition 9.5.5.
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Chapter 10.
A Jónsson-Tarski duality for higher
structures

In this chapter, we briefly recount a work in progress between the author, P. Malbos,
D. Pous and G. Struth [18]. The work in question centres around the formalisation of
rewriting techniques in higher settings, as well as in convolution algebras, and can be
seen as a continuation of [17] and [16] on the one hand, and [41] and the later publication
including the author [14]. That is, the Kleene algebraic structures recalled in Chapter 9
from [17] and their applications to coherence problems [16] described in Chapter 8 and
Section 9.4, and in particular the lifting of free higher categories to HKA described in
Section 9.1.19, were discovered to be related to the notion of `r-multisemigroups [41], now
called catoids, and structures called quantales, see [42] or the standard reference [101].
This sparked the collaboration [14], which has now led to the exploration of Jonssón-
Tarski style correspondence theorems relating catoids to quantales in a higher dimensional
setting.

In Sections 10.1 and 10.2 we recall the notions of catoid and of modal quantale from [41, 42],
respectively. Then, in Sections 10.4 and 10.3 we introduce their higher dimensional
counterparts [18]. Finally, in Section 10.5, we state Theorems 10.5.1 and 10.5.2, the
main theorems of this chapter, which express a correspondence between HKA and higher
quantales.

We do not present proofs of the results found in this section as they have all been
formalised in the proof assistant Isabelle, see G. Struth’s github repository, which
contains the author’s contributions in the formalisation of higher quantales.

10.1. Catoids

We start by recalling definitions of catoids and related structures [14, 41]. Catoids
were previously called `r-multisemigroups, but this name quickly becomes unwieldy
when considering specifics, such as locality or functionality. General background on
multisemigroups can be found in [81].

159

https://github.com/gstruth/catoids


160CHAPTER 10. A JÓNSSON-TARSKI DUALITY FOR HIGHER STRUCTURES

10.1.1. Catoids. Catoids generalise 1-categories, providing a single-set approach to
categorical structures in which the composition operation is a multi-operation. A (small)
catoid is a structure (X,�, `, r) consisting of a set X, a multioperation � : X×X → PX
and source and target maps `, r : X → X that satisfy, for all x, y, z ∈ X,⋃

{x� v | v ∈ y � z} =
⋃
{u� z | u ∈ x� y},

x� y 6= ∅ ⇒ r(x) = `(y), `(x)� x = {x}, x� r(x) = {x}.

A catoid X is functional if x, x′ ∈ y � z imply x = x′ for all y, z ∈ X and local if
r(x) = `(y) ⇒ x � y 6= ∅ for all x, y ∈ X. A single-set category is a local functional
catoid.

The partiality of the composition operation � of a functional catoid is encoded via the
empty set, i.e. x� y = ∅ when x and y are not composable. We say that the composition
of x and y is defined if x � y 6= ∅. When this is the case, we write ∆(x, y). Following
this logic, we say that the operation is total if for all x, y ∈ X there is exactly one z ∈ X
such that z ∈ x� y. In this case, the structure is isomorphic to a monoid.

The first catoid axiom expresses associativity of �. To see this more easily, we lift � to
an operation � : PX × PX → PX defined, for all A,B ⊆ X, as

A�B =
⋃

x∈A,y∈B
x� y,

and denote x�A as {x} �A. The first axiom then becomes, for all x, y, z ∈ X,

x� (y � z) = (x� y)� z.

Structures equipped with an associative multioperation are known as multisemigroups,
see [81]. The second catoid axiom states that if the composition of x and y is defined,
then the target r(x) of x equals the source `(y) of y, expressing the relationship between
composition on the one hand and source and target on the other. This captures the
composition pattern found in 1-categories, since in local dioids, ∆(x, y)⇔ r(x) = `(y).
The third and fourth catoid axioms express other relations between composition and the
source and target maps, in that they express that `(x) is a left unit and r(x) a right unit
of x. We refer to these axioms as absorption axioms.

On one hand, catoids therefore generalise single-set categories beyond locality and func-
tionality. On the other hand they correspond to multimonoids seen as multisemigroups
with many units. As explained above, in the multioperational setting, partiality of
composition is captured by mapping to the empty set. For a total operation, therefore,
∆ = X ×X. From now on, we will write xy := x� y if no confusion is possible.

10.1.2. The category of catoids. A catoid morphism f : X → Y between catoids
X and Y satisfies f(x�X y) ⊆ f(x)�Y f(y) and preserves ` and r: f ◦ `X = `Y ◦ f and
f ◦ rX = rY ◦ f . Catoids and their morphisms form a category.

A morphism f : X → Y is bounded if f(x) ∈ u�Y v implies that there are y, z ∈ X such
that x ∈ y �X z, u = f(y) and v = f(z). Bounded morphisms appear in modal and
substructural logics; they correspond to functional bisimulations [114].
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10.1.3. Example. Bounded morphisms need not satisfy f(x �X y) = f(x) �Y f(y).
Consider the discrete category on X = {a, b} as a catoid. It has source and target maps
` = idX = r and thus composition

a� b =

{
{a} if a = b,

∅ if a 6= b.

The constant map fb : x 7→ b on X is clearly a catoid morphism. It is bounded
because every x ∈ X satisfies fb(x) ∈ b � b, x ∈ x � x and b = fb(x). Nevertheless
fb(a� b) = ∅ 6= {b} = fb(a)� fb(b).

Many examples of catoids and related structures, from mathematics and computing,
can be found in [41] and [14]. Here we recall how 1-categories, and in particular free
1-categories, may be captured in this setting.

10.1.4. Catoids and categories. We have already defined (small) single-set cat-
egories as local functional catoids. This is justified by the fact that local functional
catoids with (bounded) morphisms and single-set categories à la Mac Lane with the
same morphisms are isomorphic as categories [41]. The elements of single-set categories
are 1-cells of small categories. The 0-cells of the latter correspond bijectively to identity
1-cells and thus to units of catoids. Morphisms of local functional catoids correspond to
functors of categories.

In the notation of Section 5.2.1, given a category C, we construct (XC , `, r), where the
underlying set XC is given by C1, the set of 1-cells of C. Note that this set contains the
identity morphism 1c associated to each object c ∈ C0. The composition operation is
given by f � g = {f � g}, and the source and target maps ` and r are provided by the
maps s0 and t0 respectively.

10.1.5. Free categories. The free category P ∗ over a 1-polygraph `, r : P1 → P0,
see Section 5.2.3, for a set P1 of generating 1-cells and a set P0 of 0-cells can be defined
in single-set-style as follows. We consider (XP , `, r) satisfying `◦ ` = `, r ◦ r = r, `◦ r = r
and r ◦ ` = `. These conditions mean that X` = Xr corresponds to the set of 0-cells
in the guise of identity 1-cells, while its complement X \X` corresponds to the set of
(non-identity) 1-cells. Compare this with the compatibility conditions for domain and
codomain operations in modal Kleene algebras, see Section 6.1.5.

10.1.6. Remark. Multioperations X ×X → PX are isomorphic to ternary relations
on X (as maps X → X → X → 2). A relational monoid is then a monoid in the
monoidal category of relations with the standard tensor. It has many units and can
alternatively be seen as a relational semigroup equipped with an `r-structure [24]. More
concretely, a catoid can then be defined as a relational structure (X,R, `, r) which
satisfies the associativity law ∃v. Rwxv ∧ Rvyz ⇔ ∃u. Ruxy ∧ Rwuz, the definedness law
∃z. Rzxy ⇒ r(x) = `(z) and the absorption laws Rx`(x)x and Rxxr(x), where we write Rxyz
instead of (x, y, z) ∈ R. Properties of functionality or locality can be translated into the
relational setting along the same lines.
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Ternary and more generally (n + 1)-ary relations appear as duals of binary and more
generally n-ary modal operators in Jónsson and Tarski’s duality theory for Boolean
algebras with operators [49, 50, 78, 79]. While catoids based on multirelations support
intuitive algebraic and set-theoretic reasoning, their relational siblings are more suitable
for type-theoretic approaches with functions X → X → X → 2 representing ternary
relations.

10.2. Modal Quantales

Now we recall the definition of modal quantales from [42]. Quantales [101] are complete
lattices with a continuous multiplication operation which constitute a specific case of
Kleene algebras. We augment these structures with modal operators defined via domain
and codomain operations in the style of MKA, see Section 6.1. The Isabelle theory
concerning quantalic structures can be found here.

Recall that a quantale (Q,≤, ·, 1) is a complete lattice (Q,≤) with a monoidal composi-
tion · and unit 1 that preserves all sups in both arguments, i.e. is continuous. We write∨
, ∨,

∧
and ∧ for sups, binary sups, infs and binary infs in a quantale, and ⊥ for the

smallest and > for the greatest element. A subidentity of Q is an element x ≤ 1.

A quantale is distributive if its underlying lattice satisfies x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
and thus its dual property x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). It is Boolean if its underlying
lattice is a Boolean algebra. We denote Boolean complementation by − to distinguish it
from the case of Kleene algebras, see Section 6.1.

Due to the continuity of multiplication with respect to multiplication, quantales are in
fact Kleene algebras. Indeed, a Kleene star (−)∗ : Q→ Q can be defined on any quantale
Q, for x0 = 1 and xi+1 = xxi, as

x∗ =
∨
i≥0

xi.

A domain quantale [42] is a quantale Q with an operation d : Q→ Q such that, for all
x, y ∈ Q,

x ≤ d(x)x, d(xd(y)) = d(xy), d(x) ≤ 1,

d(⊥) = ⊥, d(x ∨ y) = d(x) ∨ d(y).

These domain axioms are the same as those for domain semirings [29], see Section 6.1.3.
As for catoids, we refer to the first axiom as the absorption axiom. The second axiom
expresses locality of d . The third axiom is the subidentity axiom, the fourth the bottom
axiom and the final the (binary) sup axiom. Most properties of interest translate from
domain semirings to domain quantales. In addition, d preserves all sups and all non-empty
infs [42].

Similarly to catoids and domain semirings, Qd = {x ∈ Q | d(x) = x} = d(Q). It follows
that (Qd ,≤, ·, 1) is a subquantale of Q that forms a bounded distributive lattice in which ·

https://www.isa-afp.org/entries/Quantales.html
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equals ∧. We call Qd the lattice of domain elements or simply the domain algebra. In a
Boolean quantale, Qd is the set of all subidentities.

Quantales are closed under opposition, which exchanges the arguments in compositions.
A codomain quantale (Q, r) is then a domain quantale (Qop , d). A modal quantale is a
domain and codomain quantale (Q,≤, ·, 1, d , r) that satisfies the compatibility laws

d ◦ r = r and r ◦ d = d .

These guarantee Qd = Qr . In the case of Boolean quantales, these compatibility axioms
are not necessary. Again, we invite the reader to recall similarities with modal semirings,
see Section 6.1.

10.2.1. Remark. Locality in the form x� y 6= ∅ ⇔ r(x)`(y) 6= ∅ corresponds to

x · y 6= ⊥ ⇔ r(x) · d(y) 6= ⊥

in modal quantales, which is a consequence of locality of d and r in modal semirings,
and hence in modal quantales. In modal power-set quantales, it is even equivalent to
locality of d and r . Yet the more precise properties r(x)`(y) 6= ∅ ⇔ r(x) = `(y) and
∆(x, y) ⇔ r(x) = `(y) do not lift to modal power-set quantales. Let A, for instance,
consist of a path π1 with target v and a path π2 with target v, and let B consist of a
path π3 with source v. Then r(A) = {v, w} 6= {v} = d(B), but A ·B consists of the path
obtained from gluing π1 and π2 at their ends ,see [89] for details on such path algebras,
or revisit the path model presented in Example 6.1.22. In turn,

r({a}) ∩ d({b}) 6= ∅ ⇔ {r(a)} ∩ {`(b)} 6= ∅ ⇔ {r(a)} = {`(b)} ⇔ r({a}) = d({b})

holds at least in the atom structure of any modal power set quantale.

10.3. Globular n-Catoids and Single-Set
n-Categories

MacLane has generalised single-set categories to single-set 2-categories in Chapter XII
of his book [89], and pointed out that a single-set strict n-category is obtained by
imposing a 2-category structure on every pair (i, j) of single-set categories Xi and Xj for
0 ≤ i < j ≤ n, see Section 5.4.1. This can be generalised to catoids, thereby obtaining
higher catoids.

A (globular) n-catoid is a structure (X,�i, `i, ri)0≤i<n such that each (X,�i, `i, ri) is a
catoid and the structures interact, for all 0 ≤ i < j < n, via the following axioms:

`i ◦ `j = `j ◦ `i, `i ◦ rj = rj ◦ `i, ri ◦ `j = `j ◦ ri, ri ◦ rj = rj ◦ ri,
(w �j x)�i (y �j z) ⊆ (w �i y)�j (x�i z),

`j(x�i y) = `j(x)�i `j(y), rj(x�i y) = rj(x)�i rj(y),

`i(x�j y) ⊆ `i(x)�j `i(y), ri(x�j y) ⊆ ri(x)�j ri(y),

`j ◦ `i = `i, `j ◦ ri = ri, rj ◦ `i = `i, rj ◦ ri = ri.
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A (single-set) n-category is a local functional n-catoid, that is, each (X, ·i, `i, ri) is local
and functional.

Intuitively, the elements of X describe (generalised) n-cells, while the sets X`i , for i < n,
describe (generalised) i-cells as degenerate n-cells of lower dimension. This is similar
to, but not precisely the same as, the model of n-Kleene algebra given by the power-set
lifting of the free category generated by an n-polygraph, see Section 9.1.19. This is made
clear in Section 10.5. In fact, the atoms of K(P,Γ), see Section 9.1.19, have the structure
of a single-set n-category.

The identities in the last row of the above definition impose that all identity arrows of
the 0-structure are also identities of the 1-structure. The homomorphism laws in its third
row state that horizontal compositions of vertical identity arrows are vertical identity
arrows of the composite cells.

`0(x) r0(x) r0(y)

`1(x)

r1(x)

x

`1(y)

r1(y)

y

This explains the use of equality in these laws.

The interchange law, on the other hand, is not equational because the right-hand diagram
below is defined on the right of the interchange law, but not on the left, while the
left-hand diagram is defined on both sides.

`0(w) r0(x) r0(z)

`1(w)

r1(x)

w

x

`1(y)

r1(z)

y

z
`0(x) `0(x) `0(x) `0(x)

`1(w)

r1(x)

x

r1(z)

w
`1(y)

y

z

This is usually not made explicit when defining higher categorical structures, although
Steiner makes it clear in [105]. Recall the similarity between the above and the lax
interchange law defined in the setting of higher Kleene algebras in Section 9.1. The above
shows that the interchange law of higher categories, usually expressed as an equality, is
in fact an inclusion when the partiality of composition is modelled by mapping pairs to
the empty set. Furthermore, we see that the lax interchange law for HKA is expressing
the same phenomenon in the case of sets of higher cells; this is made clear in the proof of
Proposition 9.1.20.

Likewise, the homomorphism laws in the third row are inclusions because the left-hand
diagram below is defined on the right of the first homomorphism law, but not on the left,
and the right-hand diagram on the right of the second homomorphism law, but not on
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the left, while the diagram in the middle is defined on both sides of each.

r0(x)

`0(x)

r0(y)

`1(x)

r1(x)

`1(y)

r1(y)

x

y

`0(x) r0(y)

`1(x)

r1(y)

x

y

`0(x)

r0(x)

`0(y)

`1(x)

r1(x)

`1(y)

r1(y)

x

y

The fact that these homomorphism axioms, as well as the interchange axiom, are given
by inclusions rather than by equalities thus encodes the behaviour of composition and
source/target maps with respect to the various shapes we can build from higher globular
cells.

10.3.1. Remark. The n-catoid axioms contain redundancy. The proof assistant
Isabelle’s SAT-solvers and first-order equational theorem provers have been used for an
analysis. For irredundancy of a formula ϕ with respect to a set A of formulas, we ask
the SAT solvers for a model of A ∪ {¬ϕ}. For redundancy, we ask the theorem provers
for a proof of A ` ϕ. This often succeeds in practice. Because of the set-up of n-catoids
in terms of pairs of 2-catoids, an analysis of 2-catoids suffices.

10.3.2. Proposition. The following n-catoid axioms are irredundant and imply the
other axioms shown above:

(w �j x)�i (y �j z) ⊆ (w �i y)�j (x�i z),
`j(x�i y) = `j(x)�i `j(y), rj(x�i y) = rj(x)�i rj(y).

This reduction is convenient for relating structures, as in our correspondence results below,
and for theorem proving. More generally, the single-set approach makes n-categories
accessible to SMT solvers and first-order automated theorem provers.

10.4. Globular n-Quantales

In this section we define the quantalic structures that match the (globular) n-catoids in
Jónsson-Tarski style duality and modal correspondence results. These are in particular
globular n-Kleene algebras, as defined in Section 9.1.

A (globular) n-quantale is a structure (Q,≤, ·i, 1i, di, ri)0≤i<n such that for each 0 ≤ i < n,
the structure (Q,≤, ·i, 1i, di, ri) is a modal quantale. Furthermore, we require that the
structures interact, for all 0 ≤ i < j < n, via

(w ·j x) ·i (y ·j z) ≤ (w ·i y) ·j (x ·i z),
dj(x ·i y) = dj(x) ·i dj(y), rj(x ·i y) = rj(x) ·i rj(y),

di(x ·j y) ≤ di(x) ·j di(y), ri(x ·j y) ≤ ri(x) ·j ri(y),

dj(di(x)) = di(x).
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The axiomatisation of n-quantales is already reduced and irredundant in the sense
described in Remark 10.3.1, and is inspired by that of globular n-Kleene algebras, see
Section 9.1. The axioms from globular HKA missing from the above list are consequences
of the reduced axioms, see Lemma 10.4.1 below.

The axioms of n-quantales and n-catoids show a mismatch: dj ◦ di = di is an n-quantale
axiom while `j ◦ `i = `i is derivable in n-catoids. The same holds for the two weak
homomorphism axioms of n-quantales. For dj ◦ di = di this can be explained as follows.
Our proof of `j ◦ `i = `i relies on ∆(x, y) ⇒ r(x) = `(y), but Remark 10.2.1 explains
that the corresponding property is not available for quantales. Further, the related
property xy 6= ⊥ ⇒ r(x) ∧ d(y) 6= ⊥ is too weak to translate the proof of `j ◦ `i = `i to
quantales.

10.4.1. Lemma. In every n-quantale, for 0 ≤ i < j < n,

i) dj ◦ ri = ri, rj ◦ di = di and rj ◦ ri = ri,

ii) 1j ·i 1j = 1j and 1i ·j 1i = 1i,

iii) 1i ≤ 1j,

iv) dj(1i) = 1i, dj(1i) = 1i, rj(1i) = 1i and rj(1i) = 1i,

v) di ◦ dj = dj ◦ di, di ◦ rj = rj ◦ di, ri ◦ dj = dj ◦ ri and ri ◦ rj = rj ◦ ri,

vi) di(x ·j y) = di(x ·j dj(y)) and ri(x ·j y) = ri(rj(x) ·j y).

10.4.2. Remark. In two dimensions, the interchange laws

(w ·j x) ·i (y ·j z) ≤ (w ·i y) ·j (x ·i z)

of n-quantales appear in concurrent semirings [48] and concurrent Kleene algebras and
quantales [75]. They have often been contrasted with the seemingly equational interchange
laws of categories. Yet this ignores the subtle nature of equality in categories, which may
depend on definedness of terms in equations. The homomorphism axioms of globular
n-catoids encode such definedness presuppositions explicitly. As we have seen, this
sometimes leads to inclusions and sometimes to equations.

Finally we consider the interactions of the Kleene stars with the n-structure.

10.4.3. Lemma. In every n-quantale, for 0 ≤ i < j < n,

i) dk(x) ·i y∗j ≤ (dk(x) ·i y)∗j and x∗j ·i rk(y) ≤ (x ·i rk(y))∗j for k ∈ {i, j},

ii) (x ·j y)∗i ≤ x∗i ·j y∗i .

The properties in i) feature as axioms of globular n-Kleene algebras in [17], as recalled
in Section 9.1.16, while ii) is already present in HKA, see Proposition 9.1.18. In sum,
together with laws in previous sections all axioms of globular n-Kleene algebras have
now been derived from the smaller set of axioms for n-quantales.
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10.5. Correspondences for Power-set
Quantales

Now that we have introduced the algebraic structures we need, we can state the corre-
spondence theorem.

10.5.1. Theorem (Correspondence theorem for power-set n-quantales).

i) Let X be a local n-catoid. Then (PX,⊆,�i, Ei, `i, ri)0≤i<n is an n-quantale.

ii) Let PX be an n-quantale in which Ei 6= ∅. Then X is a local n-catoid.

Specialising to the case of n-categories, we obtain the following corollary:

10.5.2. Corollary. Every n-category lifts to an n-quantale.

Recall that Proposition 9.1.20, first found in [17], showed one direction of this correspon-
dence in the case of free higher categories. Indeed, it states that lifting the free category
generated by an n-polygraph equipped with a cellular extension results in a globular
n-Kleene algebra. Since, in the case of the proposition, the latter is a power-set algebra,
it is in particular an n-quantale. The correspondence provides a solid mathematical
foundation for the axioms given for HKA in [17]. Furthermore, the n-quantalic approach
englobes most cases of interest and provides a more streamlined axiomatisation.

A classical result by Gautam [47] shows that equations lift to the power-set level if each
variable in the equation occurs precisely once in each side. These results have later been
generalised by Grätzer and Whitney [63], or see [9] for an overview.

It is therefore no surprise that all the (unreduced) axioms of n-catoids lift directly to
corresponding properties that we have already derived from the globular n-quantale
axioms in Lemma 10.4.1. Nevertheless Gautam’s result does not prima facie cover
multioperations or even constructions of convolution algebras.

Jónsson and Tarski have considered relation algebra based on Boolean algebras instead
of complete lattice. This makes no difference. See [74, 90] for details.
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Chapter 11.
Preliminaries

This chapter introduces notions from category theory and directed topology, as well as
persistence theory, which are necessary for the treatment of the time-reversal problem
for natural homotopy, addressed in Chapter 12, and the relationship between natural
homology and persistent homology, see Chapter 13.

First, in Section 11.1, we recall the notion of group object and the fixed object slice
category, before describing the structural properties of group objects therein [93], see
Section 11.1.3. We then recall the definitions of natural systems, first appearing in the
cohomology theory of small categories [5], and an augmentation thereof called lax systems
in Section 11.2. The latter are due to Porter [93], and combine the notion of natural
system with the structure of a lax functor. Section 11.3 describes how this extra structure
defines a composition pairing on a natural system, and that lax systems are equivalent
to these objects. Tying all of this together, in Section 11.4 we show that natural systems
with composition pairings are equivalent to group objects in the corresponding fixed
object slice category.

In Section 11.5, we recall from [62] the definitions of semi-exact and homological catege-
ories, exact sequences and show that the categories of groups and of pointed sets can be
embedded in the category of actions, thus providing a common codomain for natural
homotopy functors of all dimensions. This results in Proposition 11.5.7, a consequence
of a result from [62], in which we show that we obtain a long exact sequence in the
category of actions. In Section 11.6, we recall notions of natural homotopy and natural
homology. For this, we first recall the notion of directed space, see [43, 61], and then
define the invariants, first introduced in [31]. Finally, in Section 11.7, we recall the basics
of persistence theory [19].

This chapter contains no original material and is included for completeness purposes.

11.1. Group objects

In this section we recall standard definitions for group objects and slice categories, see
for example [89] for more information. In Section 11.1.3 we recall results regarding the
structure of group objects in a certain slice category. These notions are from working
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notes of Porter [93] concerning the homology of small categories.

11.1.1. Fixed-object slice category. We denote by Cat the category of small
categories. Given some set Σ0, consider CatΣ0 , the subcategory of Cat consisting of
those small categories with Σ0 as their object set, and in which we only take functors
which are the identity on 0-cells. Given some category B ∈ CatB0 , we denote by CatB0/B
the comma category of objects in CatB0 over B.

Thus, the objects are pairs (C, p), where C ∈ CatB0 and p : C → B is a functor preserving
the common object set Σ0. Arrows f : (C, p)→ (C′, p′) are those of CatB0 , preserving
0-cells, such that the diagram

C C′

B

p

f

p′

is commutative in CatB0 .

Note that CatB0/B has arbitrary limits, and that its terminal object is the pair (B, idB).
Given an object (C, p) in CatB0/B and an arrow f : x→ y of B, the pre-image of f in C
under p is the set

Cf := {c : x→ y ∈ C | p(c) = f},

called the fibre of f under p.

11.1.2. Group objects. Here we recall the definition of group objects in a category.
Consider an arbitrary category A having finite products. We will denote by > the empty
product, which is thus the terminal object in A. In such a category, a group object, also
called internal group, is a tuple (G,µ, η, (·)−1), where G is an object of A, and

µ : G×G→ G η : T → G (·)−1 : G→ G

are morphisms of A, which are interpreted, respectively, as group multiplication, the
identity element, and the inversion map, in the sense that these morphisms must satisfy
the group axioms, expressed in terms of the commutativity of certain diagrams in A. For
example, the following express that η picks out the (left and right) identity, and that µ
is an associative operation:

>×G G×G

G

∼=

η × 1G

µ

G×G G×>

G

∼=

1G × η

µ
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(G×G)×G G× (G×G) G×G

G×G G

∼=

µ× 1G

1G × µ

µ

µ

Morally, a group object G in a category A is thus a group structure on G encoded by
morphisms of A. For a more precise definition, we refer the reader to [89, III.6].

We can also define a notion of group object homomorphism between group objects G
and G′. These are morphisms f of A such that the diagrams encoding homomorphism
properties, namely,

G×G G

G′ ×G′ G′

f × f

µ

µ′
f

> G

G′
η′

η

f

commute in A. Taking these as morphisms, we can define the category Gp(A) of group
objects in A.

Adding a diagram expressing commutativity of µ, namely:

G

G×G G×Gτ

µ µ

where τ exchanges the factors of the product, we can define abelian group objects in A,
the category of which will be denoted Ab(A).

11.1.3. Group objects in CatB0/B. We now turn to the case of group objects in
CatB0/B. We will see that for a group object (C, p) of CatB0/B, the group structure
descends to the fibres Cf above each arrow f of B. First note that if ((C, p), µ, η, (−)−1)
is a group object in CatB0/B, since (B, idB) is the terminal object, we have a morphism
η : (B, idB)→ (C, p), i.e. the following diagram is commutative in CatB0 :

B C

B

idB

η

p

This implies not only that every fibre Cf is non-empty, since η(f) ∈ Cf , but additionally
that η splits p in CatB0 . Therefore each hom-set C(x, y) is the coproduct (i.e. disjoint
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union) of the fibres:
C(x, y) =

∐
f∈B(x,y)

Cf

We will denote elements of this set (c, f) where c ∈ Cf , but will sometimes simply write
c when no confusion is possible.

The product in CatB0/B of an object (C, p) with itself is given by a pullback over B, and
is denoted (C ×B C, p̃). The category C ×B C has 0-cells Σ0 and for x, y ∈ Σ0,

(C ×B C)(x, y) = {(c, d) ∈ C(x, y)2 | p(c) = p(d)},

and p̃ assigns to each pair (c, d) of 1-cells in C ×B C their common image under p. These
hom-sets thus split as above, giving a decomposition in (set) products of fibres:

(C ×B C)(x, y) =
∐

f∈B(x,y)

Cf × Cf .

By definition of µ, we have that the following diagram commutes in CatB0 :

C ×B C C

B
p̃

µ

p

If c, d ∈ Cf , then since f = p̃(c, d) = p(µ(c, d)), we have that µ(c, d) ∈ Cf . Thus, the
fibres are preserved by µ, and there is an induced map µf for each arrow f of B,

µf : Cf × Cf → Cf .

Furthermore, this endows each fibre with a group structure. Indeed, examining the
commutative diagrams satisfied by group objects, it is routinely verified that (Cf , µf , η(f))
is a group.

11.1.4. Remark. This structure allows us to interpret C as a category enriched in
groupoids, i.e. a (2,1)-category. Indeed, viewing elements c ∈ Cf as 2-cells and defining
vertical composition by c?1d := µf (c, d), we coherently define a 2-category by functoriality
of µ. In this interpretation, for objects x, y ∈ Σ0, the hom-category C(x, y) is a discrete
groupoid, its 0-cells being 1-cells f : x→ y of B, and in which the hom-set C(x, y)(f, g)
empty for f 6= g and equal to Cf otherwise. This interpretation of group objects in the
fixeed objecet slice category is due to Porter [93].

11.1.5. The opposite group. The opposite group of an internal group
((C, p), µ, η, (−)−1) in CatB0/B is the internal group (Co, po) in CatB0/Bo, for which the
multiplication, identity and inverse maps, denoted respectively by µo, ηo and (−)−1

o , are
the induced opposite maps of µ, η and (−)−1. Note that the fibre group Cf in C associated
to a 1-cell f of B is equal to the fibre group Cofo associated to its opposite fo.
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11.2. Natural and lax systems

Now we define natural systems and lax systems on a category, and see that the two
notions are related; a natural system equipped with some extra structure is equivalent to
a lax system. Results and definitions in this section are due to Porter [93].

11.2.1. Natural systems. Given a category B, we consider the category of factori-
sation of B, denoted FB, in which 0-cells are 1-cells of B, and in which 1-cells from f
to f ′ are extensions (u, v), i.e. pairs of 1-cells of B such that ufv = f ′. Composition is
given by

(u, v)(u′, v′) = (u′u, vv′),

whenever u and v are composable with u′ and v′, respectively. The identity at f : x→ y
is the pair (1x, 1y).

We also define subcategories RB and LB of FB, having the same 0-cells as FB, but
taking only extensions of the form (1, v) or (u, 1), respectively. RB and LB generate the
factorisation category; for more information on these subcategories, we refer the reader
to [116].

A natural system on a category C with values in a category V is a functor

D : FC → V.

We will denote by Df (resp. D(u, v)) the image of a 0-cell f (resp. 1-cell (u, v)) of FC. In
most cases, we will consider natural systems with values in the category Set∗ of pointed
sets, the category Gp of groups, the subcategory Ab of abelian groups, or the category
Act, then called natural systems of pointed sets, of groups, of abelian groups, or of actions
respectively.

We denote by NatSys(C,V) the category whose objects are natural systems on C with
values in V and in which morphisms are natural transformations between functors. The
category of natural systems with values in V, denoted by opNat(V), is defined as
follows:

i) its objects are the pairs (C, D) where C is a category and D is a natural system on
C with values in V,

ii) its morphisms are pairs
(Φ, τ) : (C, D)→ (C′, D′)

consisting of a functor Φ : C → C′ and a natural transformation τ : D → Φ∗D′,
where the natural system Φ∗D′ : FC → V is defined by

(Φ∗D′)(f) = D′(Φf),

for any 1-cell f in C and Φ∗D′(u, v) = D′(Φ(u),Φ(v)) for any 1-cells u and v in C,

iii) composition of morphisms (Ψ, σ) with (Φ, τ) is defined by

(Ψ, σ) ◦ (Φ, τ) = (Ψ ◦ Φ, (Φ∗σ) ◦ τ).
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Lax systems extend the notion of natural systems. In order to define them, we must first
define lax functors and suspensions of categories.

11.2.2. Lax functors. We recall that given two 2-categoriesM and N , a lax functor
fromM to N is a data consisting of

i) A map F :M0 → N0,

ii) A functor Fx,y :M(x, y)→ N (F (x), F (y)) of hom-categories for all 0-cells x, y in
M,

iii) A 2-cell cf,g : Fx,y(f)Fy,z(g)⇒ Fx,z(fg) of N , for each pair of composable 1-cells
f and g ofM, where the juxtaposition on the left (resp. right) side denotes the
composition ?N0 (resp. ?M0 ),

iv) A 2-cell cx : 1F (x) ⇒ F (1x) of N for each 0-cell x ofM.

These assignments must satisfy the following three conditions:

1) The naturality condition: the assignment (f, g) 7→ cf,g is natural in (f, g), in the
sense that c is a natural transformation between functors induced by the Fx,y, namely
those corresponding to the clockwise and anticlockwise composites in the following
diagram:

M(x, y)×M(y, z)
Fx,y × Fy,z

//

?M0
��

N (F (x), F (y))×N (F (y), F (z))

?N0
��

M(x, z)
Fx,z

// N (F (x), F (z))

2) The cocycle condition: for 1-cells f, g and h such that the composite fgh is defined,
the following diagram commutes in N

F (f)F (g)F (h)
cf,gF (h)

%9

F (f)cg,h
��

F (fg)F (h)

cfg,h
��

F (f)F (gh) cf,gh
%9 F (fgh)

3) The left and right unit conditions: for every 1-cell f : x → y of M the following
diagrams commute in N :

F (1x)F (f)
c1x,f %9 F (f) = F (1xf)

1F (x)F (f) = F (f)

cxF (f)

EY
F (f1y) = F (f) F (f)F (1y)

cf,1yey

F (f) = F (f)1F (y)

F (f)cy

EY
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11.2.3. Remark. The naturality of c in (f, g) requires that if α : f ⇒ f ′ and β : g ⇒ g′

are 2-cells ofM, there is a commutative diagram in N :

Fx,y(f)Fy,z(g)
cf,g %9

Fx,y(α)Fy,z(β)
��

Fx,z(fg)

Fx,z(αβ)
��

Fx′,y′(f
′)Fy′,z′(g) cf ′,g′

%9 Fx′,z′(f
′g′)

The transformation c thus makes F homotopy-equivalent to a 2-functor in the sense that
it provides F with a weakened functorial behaviour with respect to 0-composition of
2-cells. Note that ifM has only identity 2-cells, the naturality condition only requires the
existence of assignments (f, g) 7→ (cf,g : Fx,y(f)Fy,z(g)⇒ Fx,z(fg)) for all composable
pairs (f, g) of 1-cells, and x 7→ (cx : 1F (x) ⇒ F (1x)) for 0-cells.

11.2.4. Suspension of monoidal categories. A monoidal category is a triple
(C,⊗, I), with C a category, ⊗ a functor

⊗ : C × C → C,

and I an object of C. This structure comes equipped with natural isomorphisms

α : ((·)⊗ (·))⊗ (·) (·)⊗ ((·)⊗ (·))
∼=

λ : I ⊗ (·) idC ρ : (·)⊗ I idC
∼= ∼=

expressing associativity of ⊗, and that I is its left and right identity. When these natural
isomorphisms are all identities, we say that C is a strict monoidal category. We say that
C is symmetric when ⊗ is a commutative operation, in the sense that there exists a
natural isomorphism

β : ⊗ ⊗ ◦ τ,

where τ : C × C → C × C is the functor which exchanges the order of factors, such that
for all objects A and B,

βA,B ◦ βB,A = 1A⊗B.

These natural isomorphisms must satisfy some coherence relations which we will not list
here; we invite the interested reader to consult [89, VII.1].

We will place ourselves in the setting of strict monoidal categories to assure that ⊗
satisfies the axioms for composition of 1-cells in a category. This, as well as an interchange
law between ⊗ and composition, automatic by functoriality of ⊗, are what we will need
to coherently define suspensions.

Given a strict monoidal category (C,⊗, I), we define its suspension C[1] as the 2-category
with:
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− A single 0-cell, ∗.

− As 1-cells, the 0-cells of C, with 0-composition given by ⊗.

− As 2-cells, the 1-cells of C, with 1-composition given by the composition in C.

This construction is an example of horizontal categorification. A well known example of
this is the realisation of a monoid as a category with a single object.

11.2.5. Strictification. Note that if C is not a strict monoidal category, this con-
struction does not define a 2-category. In this case the 0-composition is not associative,
and the 1-cell 1∗ is not really an identity; the structure we would obtain is called a
bicategory. We will ignore this detail in what follows, treating all of the monoidal
categories we encounter as strict, since a monoidal category can be made into a strict
monoidal category in a way which is coherent with the 2-categorification of a bicategory.
This strictification is not done by quotienting, but by a construction called strictification,
which exploits the notion of clique in a category. The 2-categorification of a bicategory
is in fact an adaption of the notion of strictification of a monoidal category. We refer the
curious reader to [84, 88].

11.2.6. The suspension of Gp. In particular, we consider the suspension of the
monoidal category Gp, where ⊗ is given by the cartesian product of groups and the
identity element is the trivial group I.

Let us describe this suspension in detail: Gp[1] has a single 0-cell ∗, 1-cells are groups
G,H, their composition being G×H =: G ?0 H, and 2-cells are group homomorphisms
φ, ψ, with 1-composition given by the usual composition of homomorphisms, but with the
order inversed, i.e. φ ?1 ψ = ψ ◦ φ. The 0-composition is given by φ ?0 ψ = φ× ψ. This
defines a bicategory, but we will ignore this, and think of Gp[1] as a 2-category, obtained
as the suspension of the strictification of Gp. We can similarly obtain 2-categories
from the suspensions of other (non-strict) monoidal categories of interest, such as Ab or
Set∗.

11.2.7. Lax systems. We recall from [93] the notion of lax system on a category B
with values in a cartesian category (V,×, T ), where T is the terminal object of V.

A 2-category is said to be locally discrete when its hom-categories are discrete, i.e. have
only identity arrows. We can interpret a category B as a locally discrete 2-category B2

by adding an identity 2-cell for each 1-cell of B. Moreover, the cartesian category V may
be suspended into a 2-category, which we denote by V[1]. The 2-category V[1] has only
one 0-cell, and its 1-cells and their 0-composites correspond to 0-cells in V and their
products, while its 2-cells correspond to the 1-cells of V. We recall from [93] that a lax
system on a category B with values in a cartesian category V is a lax functor from B2

with values in V[1].

It is shown in [93] that given a lax system (F, c) on B with values in V, we can construct
a natural system UD by associating to each 0-cell f of FB the 0-cell Df of V, and
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to each 1-cell (u, v) of FB the 1-cell Df → Dufv sending d to cuf,v(cu,f (1, d), 1). We
define the category of lax systems on B with values in V, denoted by LaxSys(B,V),
in which a morphism from (F, c) to (F ′, c′) is a natural transformation α : UD ⇒ UD′

between the corresponding underlying natural systems, such that the following diagram
commutes:

UDf × UDg

cf,g
//

αf × αg
��

UDf

αfg
��

UD′f × UD′g
c′f,g

// UD′fg

Notice that, as opposed to the case of natural systems, the domain of the lax functor is
not the factorisation category of B. This is because the dimension shift, in the case of
lax systems, instead takes place in the codomain, by means of suspension. We will use
the notation Df instead of D(f), and relax the notation for lax functors in the case of
lax systems, omitting the specification Dx,y on D since V[1] only has one object.

11.2.8. Lax systems of groups. Let us make explicit what a lax system of groups
on a category B looks like. We will write φ : G→ G′ for group homomorphisms, i.e. 2-
cells of Gp[1]. Firstly, the object set of B is collapsed, all 0-cells being sent to ∗. Each
1-cell f : x→ y of B is associated to a group Df , and composable arrows f and g give a
2-cell of Gp[1], so a group homomorphism, νf,g : Df ×Dg → Dfg. Recall from Remark
11.2.3 that since B2 is locally discrete, the naturality condition requires nothing more of
this assignment. Furthermore, since I is the trivial group, we have no choice in defining
the homomorphisms νx : 1∗ = I → D1x associated to objects.

As a consequence of the unit diagrams,

Df Df ×D1y

Df × I

∼=
1Df × νy

νf,1y
D1x ×Df Df

I ×Df ,

νx × 1Df ∼=

ν1x,f

.

we have the following identities:

νf,1y(d, 1) = d = ν1x,f (1, d).

The cocycle condition, for a triple (f, g, h) such that the composite fgh is defined, is the
commutativity of the following diagram:



180 CHAPTER 11. PRELIMINARIES

Df ×Dg ×Dh Dfg ×Dh

Df ×Dgh Dfgh

idDf × νg,h

νf,g × idDh

νf,gh

νfg,h

This induces an unambiguous homomorphism Df ×Dg×Dh −→ Dfgh. With these obser-
vations, we establish the following relationship between lax and natural systems:

11.2.9. Proposition ([93]). To a lax system of groups (D, ν) on a category B we can
associate a natural system UD : FB → Gp. We call this the underlying natural system
of (D, ν).

Proof. Clearly, to each 0-cell f : x → y of FB we associate the group Df . For each
extension (u, v) : f → f ′ = ufv, we need to define a group homomorphism Df −→ Dufv.
This can be done by restricting the homomorphism Du ×Df ×Dv −→ Dufv, defined
above by the cocycle condition, to the subgroup {1Du} ×Df × {1Dv}. We will denote
this homomorphism UD(u, v). Explicitly, for d ∈ Df , we have

UD(u, v)(d) = νuf,v(νu,f (1, d), 1) = νu,fv(1, νf,v(d, 1)).

Now all we need to do is verify that UD is a functor, i.e. that the assignment is compatible
with composition. We first check that UD(u′, 1)UD(u, 1) = UD(u′u, 1); recall that due
to the unit condition, UD(u, 1)(d) = νu,f (1, d) for all d ∈ Df . Calculating the diagonal
of the following cocycle diagram at (1, 1, d),

Du′ ×Du ×Df Du′u ×Df

Du′ ×Duf Du′uf

1D′u × νu,f

νu′,u × 1Df

νu′,uf

νu′u,f

we see that

UD(u′u, 1)(d) = νu′u,f (1, d)

= νu′u,f (νu′,u(1, 1), d) = νu′,uf (1, νu,f (1, d))

= UD(u′, 1)(νu,f (1, d)) = UD(u′, 1)UD(u, 1)(d)

It can similarly be shown that UD(1, v)UD(1, v′) = UD(1, vv′). Then, using that
UD(1, v)(d) = νf,v(d, 1) and again that D(u, 1)(d) = νu,f (1, d), we see that the cocycle
condition for (u, f, v) states exactly

D(1, v)D(u, 1) = D(u, v) = D(u, 1)D(1, v).
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The above proposition can be reformulated in terms of a forgetful functor:

11.2.10. Proposition ([93]). The assignment

U : LaxSys(B,Gp)→ NatSys(B,Gp)

is functorial.

Proof. This is immediate due to our choice of morphisms in LaxSys(B,Gp), see Sec-
tion 11.2.7.

11.3. Natural systems with composition
pairing

Here we describe how the extra structure provided by lax functors can be interpreted
in natural systems. Results and definitions in this section are again from [93]. Given
a natural system D on a category B, we can begin to define a lax system by sending
all 0-cells of B to ∗, and sending 1-cells f of B to the groups Df given by the natural
system. The only extra bit of structure provided by a lax system are the homomorphisms
cf,g.

11.3.1. Composition pairing. Let V be a category with finite products. Given a
natural system D on a category C with values in V, recall from [93] that a composition
pairing associated to D consists of two families of morphisms of V(

νf,g : Df ×Dg → Dfg

)
f,g∈C1 and

(
νx : T → D1x

)
x∈C0 ,

where T is the terminal object in V, such that the three following conditions are
satisfied:

i) naturality condition: the following diagram

Df × Dg

νf,g
//

D(u, 1)×D(1, v)
��

Dfg

D(u, v)
��

Duf ×Dgv νuf,gv
// Dufgv

commutes in V for all 1-cells f, g, u, v in C1 such that the composites are defined.

ii) The cocycle condition: the diagram

Df ×Dg ×Dh

νf,g × idDh
//

idDf × νg,h
��

Dfg ×Dh

νfg,h
��

Df ×Dgh νf,gh
// Dfgh

commutes for all 1-cells f, g and h of C such that the composite fgh is defined,
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iii) The unit conditions: the diagrams

Df Df ×D1y

νf,1y
oo

Df × T

1Df × νy
OO

∼=

ff D1x ×Df

ν1x,f
// Df

T ×Df

νx × 1Df

OO

∼=

88

commute for every 1-cell f : x→ y of C.

11.3.2. Categeory of natural systems with composition pairings. The
category of natural systems on C with values in V which admit a composition pairing
is the category whose objects are pairs (D, ν), with D a natural system on C and ν
a composition pairing associated to D. The morphims are natural transformations
α : D ⇒ D′ compatible with the composition pairings ν and ν ′, in the sense that the
following diagram commutes in V

Df × Dg

νf,g
//

αf × αg
��

Dfg

αfg
��

D′f ×D′g
ν ′f,g

// D′fg

for all composable 1-cells f and g in C. We will denote this category of natural systems
admitting a composition pairing by NatSysν(C,V). We denote by opNatν(V) the
subcategory of opNat(V) consisting of natural systems with values in V which admit a
composition pairing, in which we take only those morphisms (Φ, τ), see Section 11.2.1,
such that τ is compatible with the composition pairings ν and Φ∗ν ′.

11.3.3. Remark. Here we interpret the naturality condition listed above for com-
position pairings. For this, we define the category Pairs(B) of pairs; its 0-cells are
pairs (f : x → y, g : y → z) of composable 1-cells of B, and 1-cells are pairs
(u : x′ → x, v : z → z′) such that

(uf)(gv) = ufgv,

and therefore correspond to pairs of arrows ((u, 1), (1, v)) in LB ×RB. This allows us to
define functors

P1 : Pairs(B) −→ LB ×RB P2 : Pairs(B) −→ FB
(f, g) 7−→ (f, g) (f, g) 7−→ fg

(u, v) 7−→ ((u, 1), (1, v)) (u, v) 7−→ (u, v)

Composing these with (×)◦ (D,D) and D, respectively, where × is the cartesian product,
i.e. the 0-composition in V[1], we obtain functors D◦ and ◦D respectively. Explicitly, we
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have

D◦ : Pairs(B) −→ V ◦D : Pairs(B) −→ V

(f, g) 7−→ Df ×Dg (f, g) 7−→ Dfg

(u, v) 7−→ D(u, 1)×D(1, v) (u, v) 7−→ D(u, v).

Given a natural system D on a category B, a composition pairing associated to D is a nat-
ural transformation ν : D◦ ⇒ ◦D, which satisfies the cocycle and unit conditions.

This natural transformation represents a weak commutativity of 0-composition in B and
0-composition in Gp[1], as we would expect it to in the case of lax functors; it gives the
character of a 2-functor up to homotopy equivalence. However, due to the "dimension
juggling", this is reinterpreted in the context of the interplay between 0-composition in
B and the right and left components RB and LB of FB.

11.3.4. Commutator condition. Now to the question of which natural systems
of groups admit a composition pairing. For all composable arrows f and g, the left and
right actions of FB give us homomorphisms

Df Dfg Dg
D(1,g) D(f,1)

These define a homomorphism νf,g : Df ×Dg → Dfg, letting

νf,g(d, d
′) = D(f, 1)(d′).D(1, g)(d).

However, we could have decided to take ν̃f,g(d, d′) = D(1, g)(d).D(f, 1)(d′) instead. The
requirement amounts to these two homomorphisms being equal, i.e. that D satisfies a
commutation property for left and right morphisms of the factorisation category.

11.3.5. Proposition ([93]). Let D be a natural system of groups on a category B.
Then

D admits a composition pairing ν ⇐⇒ [D(f, 1)(d′), D(1, g)(d)] = 1

∀d ∈ Df ,∀d′ ∈ Dg

and in both cases ν must be given by

νf,g(d, d
′) = D(f, 1)(d′).D(1, g)(d) = D(1, g)(d).D(f, 1)(d′).

Proof. First suppose that D admits a pairing ν. Then for all (u, v), ν satisfies a naturality
condition given by

νuf,gv ◦ (D(u, 1)×D(1, v)) = D(u, v) ◦ νf,g.

We examine this condition in the case of (1, g):
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Df × D1 Df

Df ×Dg Dfg

νf,1

D(1, 1)×D(1, g)

νf,g

D(1, g)

By this, and that νf,1(d, 1) = d, evaluation at (d, 1) gives

νf,g(d, 1) = νf,g ◦ (D(1, 1)×D(1, g))(d, 1) = D(1, g) ◦ νf,1(d, 1) = D(1, g)(d).

Similarly, we get νf,g(1, d′) = D(f, 1)(d′). Then since νf,g is group homomorphism,

νf,g(d, d
′) = D(f, 1)(d′).D(1, g)(d) = D(1, g)(d).D(f, 1)(d′),

which proves the direct implication.

For the converse, we define νf,g(d, d′) := D(f, 1)(d′).D(1, g)(d) and then check that this
amounts to a composition pairing. This is almost immediate, since it is clearly a group
homomorphism, and by calculation satisfies the naturality condition for pairings, as well
as the unit conditions. The commutator hypothesis plays a role only in the verification
of the cocycle condition.

Note in particular that if a natural system is equipped with a composition pairing,
the latter is unique. The commutation condition is useful for checking whether or not
a given natural system admits a composition pairing; one only needs to check that
[D(f, 1)(d), D(1, g)(d′)] = 1 for all d ∈ Dg and d′ ∈ Df . We also get the following
corollary:

11.3.6. Corollary ([93]). Every natural system of abelian groups admits a composition
pairing.

11.3.7. Remark. The compatibility condition for natural transformations, see Sec-
tion 11.3.2, is always satisfied in the case of natural systems of groups with composition
pairings. Indeed, if α is a transformation of natural systems, we have

D′(1, g)(αf (d)) = αfg(D(1, g)(d)) and D′(f, 1)(αg(d
′)) = αfg(D(f, 1)(d′))

for all d ∈ Df and d′ ∈ Dg. Thus

αfg(νf,g(d, d
′)) =αfg(D(1, g)(d).D(f, 1)(d′))

=αfg(D(1, g)(d)).αfg(D(f, 1)(d′))

=D′(1, g)(αf (d)).D′(f, 1)(αg(d
′))

=ν ′f,g(αf (d), αg(d
′)).

We thereby deduce that NatSysν(B,Gp) (resp. opNatν(Gp)) is a full subcategory
of NatSys(B,Gp) (resp. opNat(Gp)), and that the categories NatSys(B,Ab) and
NatSysν(B,Ab) are equal.
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11.3.8. Lax systems are natural systems with composition pairings. We
now establish the equivalence of categories which links lax systems to natural systems
with composition pairings.

11.3.9. Proposition ([93]). There exist functors

Φ : NatSysν(B,Gp)→ LaxSys(B,Gp) Ψ : LaxSys(B,Gp)→ NatSysν(B,Gp)

establishing an isomorphism of categories

LaxSys(B,Gp) ∼= NatSysν(B,Gp).

Proof. Given a natural system with composition pairing (D, ν), we take Φ(D, ν) to be
the lax system which sends 0-cells in B2 to ∗ and 1-cells f to Df . The unit and cocyle
conditions are satisfied by ν by default, and the naturality as required by the definition
of lax functors is trivial since we view B2 is a locally discrete 2-category.

For a lax system D = (D, ν), we take Ψ(D, ν) = (UD, ν). Recall from the proof of
Proposition 11.2.9 we have D(f, 1)(d′) = νf,g(1, d

′) and D(1, g)(d) = νf,g(d, 1). Thus

D(f, 1)(d′).D(1, g)(d) = νf,g(d, d
′) = D(1, g)(d).D(f, 1)(d′),

and we conclude that ν indeed defines a composition pairing via Proposition 11.3.5. All
that is left is the cocycle and unit conditions, which are given by the lax structure.

The functoriality of these assignments is immediate from the choice of morphisms in each
category. Furthermore, they are mutually inverse.

11.4. Lax systems are group objects

Here we describe the link between the group objects in CatB0/B and lax systems of
groups on B, or equivalently, natural systems on B with composition pairings. Indeed, in
Theorem 11.4.3, we recall the isomorphism of categories

NatSysν(B,Gp) ' Gp(CatB0/B).

11.4.1. Group objects to natural systems with composition pairings.
Starting with a group object ((C, p), µ, η, (−)−1), we construct a natural system of groups
with composition pairing. Recall that each hom-set in C decomposes into fibres

C(x, y) =
∐

f∈B(x,y)

Cf

and that each of these fibres carries a group structure (Cf , µf , η(f)). We define a natural
system D with the assignment f 7→ Cf , i.e. Df = Cf . To a morphism (u, v) : f → ufv
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in FB, we need to associate a group homomorphism Cf → Cufv. For c ∈ Cf , this will be
given by the assignment

c 7−→ η(u) ?0 c ?0 η(v)

where ?0 is the composition in C. These are group homomorphisms by functoriality of µ
and η. Furthermore, this assignment defines a functor FB → Gp. Indeed, we have

η(u′) ?0 η(u) ?0 c ?0 η(v) ?0 η(v′) = η(u′u) ?0 c ?0 η(vv′)

since η is a functor B → C. We have defined a natural system D on B.

Now we need to find the composition pairing associated to D. This will be given by
the composition in C; notice that by functoriality of µ, we have that for c, c′ ∈ Cf and
d, d′ ∈ Cg,

µfg((c ?0 d), (c′ ?0 d
′)) = (c ?0 d) ?1 (c′ ?0 d

′) = (c ?1 c
′) ?0 (d ?1 d

′) = µf (c, c′) ?0 µg(d, d
′)

and thus ?0, the composition in C, provides a group homomorphism

Cf × Cg −→ Cfg.

It is this homomorphism we will use as the component of the composition pairing ν
at (f, g). We still need to verify that ν is in fact a valid composition pairing. The
calculation

c ?0 d = µ(c ?0 d, η(fg)) = µ(c ?0 d, η(f) ?0 η(g))

= µ(c ?0 η(g), η(f) ?0 d)

= D(1, g)(c).D(f, 1)(d)

gives us that νf,g(c, d) = D(1, g)(c).D(f, 1)(d), and by similar calculation we get

D(f, 1)(d).D(1, g)(c) = D(1, g)(c).D(f, 1)(d).

Proposition 11.3.5 then allows us to conclude that ν is indeed a composition pairing.

We have thus constructed a natural system with a pairing morphism from a group object
of CatB0/B. We will denote this assignment by (D, ν) =: Γ((C, p), µ, η, (−)−1).

11.4.2. Natural systems with composition pairings to group objects.
Now we will examine the inverse construction. From a natural system with composition
pairing (D, ν), we start by defining the associated object C of CatB0 . As 0-cells, we
of course take those of B, and for 0-cells x and y, we define the associated hom-set by
letting

C(x, y) :=
∐

f∈B(x,y)

Df .

Elements of these sets, i.e. 1-cells of C, will be denoted by a pair (c, f) with c ∈ Df .
We need to define the composition ?0 of such arrows, and this will be achieved using
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the composition pairing ν. A consequence of our definition of hom-sets is that we can
decompose products as follows:

C(x, y)× C(y, z) =
∐

f∈B(x,y),g∈B(y,z)

Df ×Dg.

This means we need a map ∐
f∈B(x,y),g∈B(y,z)

Df ×Dg −→
∐

h∈B(x,z)

Dh.

We define composition fibre by fibre using νf,g : Df ×Dg → Dfg, by setting

(c, f) ?0 (d, g) := (νf,g(c, d), fg).

This defines a composition map for a category since it is associative by the cocycle
condition, and has identities given, at x, by the pair (1Df , 1

B
x ).

Defining p : C → B as the identity on 0-cells, and assigning the pair (c, f) to f , gives,
by definition of the composition in C, a functor of CatB0 . Then (C, p) is an object of
CatB0/B; we still need to prove that it is a group object. For this, we must define µ and
η.

We define η : B → C by setting η(f) := (1Df , f). By definition of composition in C, this
is a functor, and since p ◦ η = idB, it is an arrow (B, idB) −→ (C, p) of CatB0/B. To
define µ, recall that the product in CatB0/B is given by pullback over B in CatB0 :

(C, p)× (C, p) = ((C ×B C), p̃)

where

(C ×B C) = {((c, f), (d, g)) | p(c, f) = p(d, g) i.e. f = g} =
∐

f∈B(x,y)

Cf × Cf .

We can therefore let µ((c, f), (d, f)) := (c.d, f). This gives a functor of CatB0 since

µ((c, f) ?0 (d, g), (c′, f) ?0 (d′, g)) = (νf,g(c, d).νf,g(c
′, d′), fg)

= (νf,g(c.c
′, d.d′), fg) = (c.c′, f) ?0 (d.d′, g)

= µ((c, f)(c′, f)) ?0 µ((d, g), (d′, g)

where we used that νf,g is a group homomorphism. All that is left to check is the
commutativity of the diagrams expressing the group axioms, but these are immediate
since µ and η are defined in terms of the group structures on the fibres.

We will denote this assignment by ((C, p), µ, η, (−)−1) =: Λ(D, ν).

11.4.3. Theorem ([93]). The assignments Λ and Γ are functorial, and induce an
isomorphism of categories

NatSysν(B,Gp) ' Gp(CatB0/B).
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Proof. We first check that the above assignments are functorial.

Let ((C, p), µ, η, (−)−1) and ((C′, p′), µ′, η′, [.]−1) be group objects in CatB0/B, and φ a
morphism between them; recall that φ is then a functor (C, p)→ (C′, p′) satisfying the
commutativity of certain diagrams expressing that φ behaves like a group homomorphism.
Since for every c ∈ Cf , f = p(c) = p′(φ(c)), we have φ(f) ∈ C′f . Thus φ restricts to a
map φf on each fibre, and since we have

φ ◦ µ = µ′ ◦ (φ× φ), φ ◦ η = η′,

each φf is a group homomorphism Cf −→ C′f . These provide the components of a natural
transformation Γ(φ) between the associated natural systems. Recall that if (D, ν) =
Γ((C, p), µ, η, (−)−1) is the natural system derived from (C, p), we have D(u, v)(c) =
η(u) ?0 c ?0 η(v). Then, since

φ(η(u) ?0 c ?0 η(v) = η′(u) ?0 φ(c) ?0 η
′(v),

we have defined a natural transformation due the commutativity of

Df Dufv

D′f D′ufv

D(u, v)

Γ(φ)f

D′(u, v)

Γ(φ)ufv

The last thing we need to check is compatibility with the composition pairings ν and
ν ′, but as we saw earlier, this is automatic since Γ(φ) is a natural transformation of the
natural systems.

The functoriality of the inverse construction involves routine checking. From a nat-
ural transformation ψ : (D, ν) ⇒ (D′, ν ′) respecting composition pairings, writing
((C, p), µ, η, (−)−1) = Λ(D, ν) and ((C′, p′), µ, η, (−)−1) = Λ(D′, ν ′), we get fibre maps
Λ(ψ)f : Cf → C ′f , sending (c, f) ∈ Cf , where c ∈ Df , to (ψf (c), f). We use these maps
to build a functor Λ(ψ) : C → C′ between the categories, fibre by fibre. This is functorial,
since composition is given by the composition pairings:

Λ(ψ)((c, f) ?C0 (d, g)) = Λ(ψ)(νf,g(c, d), fg)

= (ψfg(νf,g(c, d), fg)

= (ν ′f,g(ψf (c), ψg(d)), fg) = (ψf (c), f) ?C
′

0 (ψg(d), f)

Furthermore, since it is defined fibre by fibre, it is a functor of CatB0/B, i.e. we have
p = p′ ◦ ψ.

We still need to see that ψ is a morphism of group objects, i.e. interacts correctly with
the multiplication and identity maps. This is because each ψf is a group homomor-
phism Df −→ D′f and the multiplication and identity maps are constructed from the
multiplication and identity in each of those groups.
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To conclude that we have an equivalence of categories we need to examine the composites
ΛΓ and ΓΛ.

Given a group object ((C, p), µ, η, (−)−1), we have that ΛΓ(C, p) consists of a category
ΛΓ(C) with objects those of C, and for x and y such objects, hom-sets

ΛΓ(C)(x, y) =
∐

f∈B(x,y)

Γ(C, p)f =
∐

f∈B(x,y)

Cf .

Furthermore, if (c, d) ∈ ΛΓ(C)(x, y) and (d, g) ∈ ΛΓ(C)(y, z), we have

(c, f) ?
ΛΓ(C)
0 (d, g) = (µ(Γ(C, p)(1, g)(c),Γ(C, p)(f, 1)(d)), fg)

= µ(c ?C0 η(g), η(f) ?C0 d)

= µ(c, η(f)) ?C0 µ(η(f), d) = c ?C0 d.

The slight difference in results is cosmetic; it comes from the notation of elements in
a coproduct. These compositions are in fact the same. Thus ΛΓ(C) is equal to C, and
we also get the same functor p back via ΛΓ. Further routine checking shows that the
multiplication and identity maps are carried over identically as well.

Now, given a natural system with composition pairing (D, ν), ΓΛ(D) is the natural
system which to an arrow f of B associates the fibre group Λ(D, ν)f , which is by definition
equal to Df . Additionally, writing Λ(D, ν) = ((C, p), µ, η, (−)−1), an extension (u, v)
gives a group homomorphism sending c ∈ Df to ΓΛ(D, ν)(u, v)(c) = η(u) ?C0 c ?

C
0 η(v).

Routine checking gives η(u) ?C0 c ?
C
0 η(v) = D(u, v)(c) for all c ∈ Df . Thus D and ΓΛ(D)

are the same natural system. We also easily verify that ΓΛ(ν) = ν.

These functors are thus mutually inverse, and the categories are isomorphic.

Using the above results and Corollary 11.3.6, we also have:

11.4.4. Corollary ([77]). There is an isomorphism of categories

NatSys(B,Ab) ' Ab(CatB0/B).

11.5. Exact sequences of actions

In this section, we recall notions from [62] concerning exactness in certain non-abelian
categories. This is in the interest of first defining relative natural homotopy, and then
showing that we obtain a long exact sequence of relative homotopy groups as in the
classical case. Proposition 11.5.7 first appeared in [15] but is simply a special case of
Theorem 6.4.9 in [62]. In what follows, we denote by Gp the category of groups and group
homomorphisms, and by Set∗ the category of pointed sets and pointed maps.
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11.5.1. Semi-exact and homological categories. We would like to define an
exactness property in the setting of non-abelian categories. To do this, we use a
generalisation of kernels and cokernels.

An ideal N of a category M is a set of 1-cells of M stable by external composition,
i.e. such that for all g ∈ N and all f, h 1-cells ofM for which it makes sense, we have
fgh ∈ N . The elements of N are called null morphisms, and a 0-cell ofM is called a
null object when its identity is null.

We consider closed ideals; those in which every morphism in N factorises through an
identity of N , or equivalently, through a null object. More precisely, an ideal N is closed
if for every f : A→ C ∈ N , there exists a null object B and morphisms g : A→ B and
h : B → C such that f = gh. From now on, all ideals will be assumed to be closed.

The kernel with respect to a closed ideal N , or simply kernel when no confusion is
possible, of a 1-cell f : A→ B is a 1-cell ker(f) : Ker(f)→ A annihilating f , i.e. such
that ker(f)f is null, and is minimal with this property in the sense that for all g such
that gf is null, there exists a unique morphism g such that g = gker(f).

Dually, the cokernel of f is a 1-cell cok(f) : B → Cok(f), such that fcok(f) is null and
every 1-cell annihilating f on the right factorises uniquely through cok(f). The situation
is described diagrammatically below:

Ker(f) A B Cok(f)

C C ′

ker(f) f

gg

cok(f)

g′
g′

.

Note that the kernel and cokernel of a 1-cell, if they exist, are uniquely determined.
When a 1-cell f ofM is the kernel of another, we say that f is a normal mono, whereas
when it is a cokernel, we call it a normal epi.

A pair (M, N) define a semi-exact category when N is a closed ideal ofM, and every 1-
cell ofM has a kernel and cokernel with respect to N . In such a category, we additionally
define the (normal) image of a morphism f by setting im(f) = ker(cok(f)), and dually,
the (normal) coimage coim(f) = cok(ker(f)). We say that a morphism f is exact when
it factorises f = qn with q a normal epi and n a normal mono.

11.5.2. Example. In the category Gp, (co-)kernels and (co-)images coincide with the
usual notions. Let us examine the case of Set∗. This category is pointed, meaning that
its initial and terminal objects coincide; we call it the zero object. Such categories come
with a canonical structure of semi-exact category; we take null morphisms to be those
which factorise through the zero object. Thus, a 1-cell f : (X,x) → (Y, y) of Set∗ is
null if and only if f(X) = {y}. Its kernel is the inclusion ker(f) : (f−1({y}), x→ (X,x),
while its cokernel is the quotient cok(f) : (Y, y)→ (Y/f(X), [y]), where [y] is the class of
the base point y in the quotient space Y/f(X).
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11.5.3. Exact sequences. In a semi-exact categoryM = (M, N), we can generalise
the properties of sequences of morphisms. Given composable morphisms f and g ofM,
we say that the sequence

A B C
f g

− is of order two (at B) when fg is null.

− is exact (at B) when im(f) = ker(g).

− is short exact (at B) when f = ker(g) and g = cok(f).

As in the classic setting, a short exact sequence is exact, and an exact sequence is of
order two.

11.5.4. The category of actions. Here we recall the category Act of actions of
groups on pointed sets from [62]. This category will be of use because we can view Gp
and Set∗ in Act while preserving exactness properties.

An action is a pair (X,G) where X is a pointed space, whose base point we shall denote
by 0X , and G is a group with identity element 1G, equipped with a right action of G on
X. The base point of X is not assumed to be fixed by the action, and we will write

G0 = FixG(0X) = {g ∈ G | 0X · g = 0X}

to denote the subset of G fixing the base point.

In Act, a morphism is a pair f = (f ′, f ′′) : (X,G) → (Y,H) where f ′ : X → Y is a
morphism of pointed sets, and f ′′ : G→ H is a morphism of groups compatible with the
action in the sense that for all g ∈ G and all x ∈ X,

f ′(x · g) = f ′(x) · f ′′(g).

Abusing notation, we will denote f ′ and f ′′ by f when no confusion is possible.

Now we define a closed ideal of morphisms which makes Act a semi-exact category as
introduced by Grandis in [62, Section 6.4]. This will be inherited from the null ideal
described above in the case of Set∗; we take the null morphisms to be those f = (f ′, f ′′)
such that f ′ is a null morphism of Set∗, i.e. f ′(X) = {0Y }. This ideal, which we will
denote N , is closed, since null objects are actions on the trivial pointed set, and a null
morphism f : (X,G)→ (Y,H) clearly factorises through ({0Y }, H0).

To see that Act is semi-exact, we explicit the kernel and cokernel of a null morphism
f : (X,G)→ (Y,H):

i) Its kernel is the inclusion

(Ker(f ′), f−1(H0)) −→ (X,G).

Recall that Ker(f ′) = f−1({0Y }), and let it be observed that f−1(H0) is the subset
of G consisting of elements g such that x = x′ · g for some x, x′ ∈ Ker(f ′).
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ii) Its cokernel is the projection

(Y,H) −→ (Y/R,H)

where R is an equivalence relation on Y generated by identifying all of the points of
f(X) in a way which is compatible with the action of H. More precisely, y ≡R y′ if
and only if either y or y′ is an element of f(X) and there exists some h ∈ H with
y = y′ · h.

This shows that every morphism of Act has a kernel and cokernel with respect to N ,
i.e. that (Act, N) is a semi-exact category. In fact, a little extra work allows us to show
that it is even homological, meaning that normal monos and normal epis are stable under
composition, and that whenever m is a normal mono and q a normal epi such that ker(q)
factorises through m, mq is exact.

11.5.5. Embeddings of Gp and Set∗ in Act. There exist embeddings of the
categories Gp and Set∗ into the category Act that preserve exactness of sequences and
morphisms, see again [62]. In the case of Set∗, there are adjoint functors,

J : Set∗ → Act, V : Act→ Set∗,

defined by J(X) = (X, {1}) and V (X,G) = X/G for all pointed sets X and groups G
with a right action on X, where (X, {1}) is the action of the trivial group on X, and
X/G is the quotient of X by the G-orbits of the action, pointed at the class of 0X . The
functor J induces an equivalence of categories between Set∗ and the full homological
subcategory of Act consisting of actions of the trivial group. This, along with the fact
that J preserves null morphisms, means that it preserves exactness of sequences.

On the other hand, the category Gp can be realised as a retract of the category Act,
via the functors

K : Gp→ Act, R : Act→ Gp,

defined by K(G) = (|G|, G) and R(X,G) = G/G0, where (|G|, G) is the usual right
action of G on the underlying set |G|, pointed at 1G. Recall that this action is transitive.
In the definition of R, G/G0 is the quotient of G by the invariant closure in G of the
subgroup G0 stabilising the base point 0X of X. These show that Gp is a retract of
Act in the sense that R ◦K = idGp since the action of G on itself is transitive. As a
consequence, a sequence of groups viewed in Act is exact if and only if the sequence is
exact in the usual sense.

11.5.6. Relative homotopy sequences in Act. Here we briefly recall the defi-
nition of relative homotopy groups in the usual setting of pairs of topological spaces, and
then see that these fit into an exact sequence in Act.

Let us recall the definition of the relative homotopy groups of a pair of topological
spaces. For n ≥ 1, let In denote the n-dimensional unit cube [0, 1]n. We single out the
face In−1 := {(x1, . . . , xn) | xn = 0}, and define Jn to be the closure of ∂In \ In−1 in
In. Given a pointed pair of topological spaces (X,A), i.e. a space X and a subspace
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A ⊆ X pointed at x ∈ A, we define, for n ≥ 1, the nth relative homotopy of (X,A) by
setting

πn(X,A) := [f : (In, ∂In, Jn)→ (X,A, x)]

i.e. the homotopy classes of maps f : In → X with f(∂In) ⊆ A and f(Jn) = {x}. The
homotopies between such maps must satisfy the same conditions.

Note that for n = 1, this is not a group for concatenation. Indeed, a map f :
(I, {0, 1}, 1) → (X,A, x) is required to end at x, but can start anywhere in A, and
therefore such maps can in general not be concatenated. We consider π1(X,A) as a
pointed set, the pointed element being the class of paths f such that f is homotopic to
a path g with its image contained in A, i.e. g([0, 1]) ⊆ A. For n ≥ 2, πn(X,A) forms
a group under concatenation, and is abelian for n ≥ 3. For f : In → X, its class in
πn(X,A) is the identity element if, and only if, it is homotopic to a map g : In → X
with its image contained in A. We refer the reader to [70] for more information about
relative homotopy.

The assignment of relative homotopy groups to a pointed pair of spaces is functorial.
Its domain is the category of pointed pairs of topological spaces, denoted by >∗2, in
which a morphism f : (X,A, x) → (Y,B, y) is a continuous map f : X → Y such that
f(A) ⊆ f(B) and f(x) = y, and its codomain is Set∗ for n = 1, Gp for n = 2 and
Ab for n ≥ 3. We can therefore consider these as functors with values in Act for all
n ≥ 1.

11.5.7. Proposition ([15]). Given a pointed pair of topological spaces (X,A), we get
an exact sequence in Act:

. . . πn(A)→ πn(X)→πn(X,A)
∂n→ πn−1(A)→ . . .

. . .
v→ π1(X)

f→ (π1(X,A), π1(X))
g→ π0(A)

h→ π0(X)→ π0(X,A)→ 0.

Below we outline why this sequence is exact in the particular case of relative homotopy;
as stated in [62], it is a consequence of Theorem 6.4.9 from the same reference. Note
that all of the arrows are induced by inclusions, except the last non-trivial arrow and
the maps ∂n, which are given by restriction to the distinguished face: ∂n([σ]) = [σ]|In−1 .
Also recall that we have not defined a relative homotopy group for n = 0; the object
π0(X,A) is defined to be Cok(h). It is thus the quotient of the set of path-connected
components of X obtained by identifying the components which intersect A.

All the terms above π1(X) are groups, and the existence of this long exact sequence in
Gp is well known. It is in fact a special case of a Puppe sequence, see [102, Theorem
11.39]. Since exactness is carried into Act, we know that the sequence is exact in Act
up to this object.

As observed above, π1(X,A) is not a group, but a pointed set. The group π1(X) acts
on it by concatenation; the elements of π1(X,A) have starting point 0X , and so we can
concatenate with elements of π1(X) at that end. The sequence is exact at π1(X) =
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(|π1(X)|, π1(X)) since the image of v is precisely Ker(f ′); indeed, Fixπ1(X)(0π1(X,A)) =
π1(A).

The map g in the above sequence sends (τ, σ) ∈ (π1(X,A), π1(X)) to the path-connected
component of τ(0) ∈ A. We therefore view it is a pointed set map from π1(X,A) to
π0(A). The sequence is exact at (π1(X,A), π1(X)) because the antecedents under g of
the pointed element of π0(A), namely the component containing the base point x, are
elements of the orbit of the pointed element 0 of π1(X,A), i.e. 0 · π1(X). This coincides
with the image of f since it is defined by sending σ ∈ π1(X) to (0 · σ, σ).

Lastly, we show exactness at π0(A), since at π0(X) it follows by definition of π0(X,A).
Observe that the inverse image under h of the pointed element [x] in π0(X) is exactly {[x]},
the pointed element in π0(A), since h is induced by the inclusion A ↪→ X. Furthermore,
for τ ∈ π1(X,A), g(τ) is necessarily in the same path connected component as x. Thus,
the image of g coincides with the kernel of h.

11.6. Directed homology and homotopy

In this section we recall the notion of directed spaces from [61], and define algebraic
invariants for these spaces, natural homotopy and natural homology, as introduced
in [31, 32].

11.6.1. Directed spaces. Recall from [61] that a directed space, or dispace, is a
pair X = (X, dX), where X is a topological space and dX is a set of paths in X,
i.e. continuous maps from [0, 1] to X, called directed paths, or dipaths for short, satisfying
the three following conditions:

i) Every constant path is directed,

ii) dX is closed under monotonic reparametrization,

iii) dX is closed under concatenation.

We will denote by f ? g the concatenation of dipaths f and g, defined via monotonic
reparametrization. A morphism ϕ : (X, dX) → (Y, dY ) of dispaces is a continuous
function ϕ : X → Y that preserves directed paths, i.e. , for every path p : [0, 1]→ X in
dX, the path ϕ∗p : [0, 1]→ Y belongs to dY . The category of dispaces is denoted dTop.
An isomorphism in dTop from (X, dX) to (Y, dY ) is a homeomorphism from X to Y
that induces a bijection between the sets dX and dY .

Note that the forgetful functor U : dTop→ Top admits left and right adjoint functors.
The left adjoint functor sends a topological space X to the dispace (X,Xd), where Xd is
the set of constant directed paths. The right adjoint sends X to the dispace (X,X [0,1]),
where X [0,1] is the set of all paths in X.

For a dispace X = (X, dX) and x,y in X, we denote by
−→
Di(X )(x, y) the space of dipaths

f in X with source x = f(0) and target y = f(1), equipped with the compact-open
topology.
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11.6.2. The trace category. The trace space of a dispace X from x to y, denoted
by
−→
T (X )(x, y), is the quotient of

−→
Di(X )(x, y) by monotonic reparametrization, equipped

with the quotient topology. The trace of a dipath f in X , denoted by f or f if no confusion
is possible, is the equivalence class of f modulo monotonic reparametrization. The
concatenation of dipaths of X is compatible with this quotient, inducing a concatenation
of traces defined by f ? g := f ? g, for all dipaths f and g of X . We will denote by

−→
P : dTop→ Cat

the functor which associates to a dispace X the trace category of X , whose 0-cells
are points of X, 1-cells are traces of X , and composition is given by concatenation of
traces.

11.6.3. Trace diagrams. The pointed trace diagram in Top∗ of a dispace X is the
functor −→

T ∗(X ) : F
−→
P(X )→ Top∗

sending a trace f : x→ y to the pointed topological space (
−→
T (X )(x, y), f), and a 1-cell

(u, v) of F
−→
P(X ) to the continuous map

u ?_ ? v :
−→
T (X )(x, y)→

−→
T (X )(x′, y′)

which sends a trace f to u ? f ? v. The functor
−→
T ∗(X ) extends to a functor

−→
T ∗ : dTop→ opNat(Top∗)

sending a dispace X to the pair (
−→
P(X ),

−→
T ∗(X )). Observe that a morphism of dispaces

ϕ : X → Y induces continuous maps

ϕx,y :
−→
T (X )(x, y)→

−→
T (Y)(ϕ(x), ϕ(y))

for all points x, y ofX. Thus we obtain natural transformations between the corresponding
trace diagrams:

−→ϕ ∗ :
−→
T ∗(X )⇒

−→
T ∗(Y).

11.6.4. Natural homotopy and natural homology. Recall from [31] that the
1st natural homotopy functor of X is the natural system denoted by

−→
P1(X ) : F

−→
P(X )→

Set, and defined as the composite

F
−→
P(X )

−→
T ∗(X )−→ Top∗

π0−→ Set∗,

where π0 is the 0th homotopy functor with values in Set∗. That is, for a trace f on X
from x to y,

−→
P1(X )f = (π0(

−→
T (X )(x, y)), [f ]),
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where [f ] denotes the path-connected component of f in
−→
T (X )(x, y). For n ≥ 2, the nth

natural homotopy functor of X , denoted by
−→
Pn(X ) : F

−→
P(X ) → Gp, is defined as the

composite

F
−→
P(X )

−→
T ∗(X )−→ Top∗

πn−1−→ Gp,

where πn−1 is the (n− 1)th homotopy functor. Note that for n ≥ 3, the functor
−→
Pn(X )

has values in Ab. Finally, for n = 0, we define
−→
P0(X ) : F

−→
P(X )→ Set∗ as the functor

sending a trace f to the pointed singleton ({f}, f).

Using the inclusion functors J : Set∗ → Act andK : Gp→ Act defined in Section 11.5.5,
the classical homotopy functors can be realised as functors πn : Top∗ → Act, for all
n ≥ 0. With this interpretation, natural homotopy can be resumed by functors

−→
Pn(X ) : F

−→
P(X )→ Act,

for all n ≥ 0.

Recall from [32], that for n ≥ 1, the nth natural homology functor of X is the functor
denoted by

−→
Hn(X ) : F

−→
P(X )→ Ab, and defined as the composite

F
−→
P(X )

−→
T (X )−→ > Hn−1−→ Ab

where Hn−1 is the (n− 1)th singular homology functor.

The functors
−→
Pn(X ) and

−→
Hn(X ), for X in dTop, extend to functors

−→
Pn : dTop −→ opNat(Act), and

−→
Hn : dTop −→ opNat(Ab),

sending a dispace X to (
−→
P(X ),

−→
Pn(X )) and (

−→
P(X ),

−→
Hn(X )) respectively.

11.6.5. Proposition. Given a topological space X, the dispace X = (X,X [0,1]) is such
that for every x in X, −→

Pn(X )cx
∼= πn(X,x),

where cx denotes the trace of the constant dipath equal to x.

Proof. Recall that for any x ∈ X, the loop space Ω(X,x) is the set of all continuous paths
p : S1 → X given the compact-open topology, and is thus homeomorphic to

−→
Di(X )(x, x).

As a consequence of Eckmann-Hilton duality, for any topological space X and any n ≥ 1,

πn(X,x) ∼= πn−1(Ω(X,x)).

The quotient of Ω(X,x) by monotonic reparametrization is the space
−→
T (X )(x, x), and

since paths in the same reparametrization class are homotopic, we have
−→
Pn(X )cx

∼=
πn(X,x).

As a consequence, given a dispace X = (X,X [0,1]), if X is n-connected, then for every
x ∈ X, the space

−→
T (X )(x, x) is also (n− 1)-connected. Applying the Hurewicz theorem,

Proposition 11.6.5 yields the following result.
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11.6.6. Corollary. For n ≥ 1 an (n − 1)-connected topological space X, the dispace
X = (X,X [0,1]) is such that for every x in X

−→
H i(X )cx

∼= Hi(X),

for all i ≤ n.

11.7. Persistent homology

This section deals with basic notions of persistent homology in order to fix the notations
and make the thesis self-contained. We recall definitions of persistence objects and
persistence homology, and the classification in terms of barcodes. We recall also an
algorithm for computing persistent homology from [21]. We refer the reader to [19, 35, 36]
for complete accounts of persistent homology.

11.7.1. Persistence complexes. Given a poset P , considered as a category, a
P -persistence object in a category C is a functor Φ : P → C. Explicitly, it is given by a
collection {Cx}x of objects in C indexed by the elements of P , and such that for all x ≤ y
in P , there exists a unique map φx,y : Cx → Cy, such that with φy,z◦φx,y = φx,z whenever
x ≤ y ≤ z. We denote by Ppers(C) the functor category of P -persistence objects in C.
When C is the category of simplicial complexes, chain complexes, groups... the objects of
Ppers(C) are called P -persistence simplicial complexes, chain complexes, groups...

In particular, considering the poset N of natural numbers with the usual order, a positive
N-persistence complex, or persistence complex for short, over a ground ring R is a family
of chain complexes C = {Ci∗}i≥0 over R, together with chain maps f i : Ci∗ → Ci+1

∗ ,
giving, for every k ∈ N, the following diagram in the category of R-modules:

C0
k

f0
k
// C1
k

f1
k
// . . . // Cik

f ik
// Ci+1
k

// . . .

A persistence module M is a persistence complex concentrated in degree zero, i.e. a
family of R-modules {M i}i≥0, together with maps f i : M i →M i+1.

The persistence complex C is called of finite type if each R-module Cik is finitely generated,
and if there exists some N such that the maps f i are isomorphisms for i ≥ N .

11.7.2. Persistent homology. Recall that a simplical complex is a set K, together
with a collection K of subsets of K, satisfying the following two conditions:

ii) for every v ∈ K, {v} ∈ K, and {v} is called a vertice of K;

iiii) α ∈ K and β ⊆ α implies β ∈ K.

A k-simplex of K is an element σ of K whose cardinal |σ| is equal to k+1. An orientation
of a k-simplex σ = {v0, . . . , vk} is an equivalence of orderings of the vi in σ; two orderings
are equivalent if they can be obtained from an even permutation. A simplex with an
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orientation is called an oriented simplex, and we write [v0, . . . , vk] or [σ] to denote the
equivalence class.

Denote by Ck(K) the kth chain module of K defined as the free R-module on oriented
k-simplices of K. The boundary operator ∂k : Ck(K)→ Ck−1(K) is the map defined on
any simplex σ = {v0, . . . , vk} by setting

∂k(σ) =
∑
i

(−1)i[v0, . . . , v̂i, . . . , vk],

where in the right side v̂i indicates that the vertex vi is eliminated from the simplex.
Denote by Zk(K) = ker ∂k, Bk(K) = Im ∂k+1, and Hk(K) = Zk(K)/Bk(K) the cycle,
boundary, and homology modules respectively.

A subcomplex of K is a simplicial complex L such that L ⊆ K. A filtered complex is a
complex K together with a filtration, that is a nested sequence of subcomplexes:

K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn = K.

Given such a filtration, we recall the definition of the p-persistent kth homology group of
Ki, given as the quotient

H i,p
k (K) := Zk(K

i)/Bk(K
i+p) ∩ Zk(Ki).

All of these groups can be combined in a single persistence module. Indeed, we consider
the persistence complex C(K) = {C∗(Ki)}i∈N, in which the chain maps f i : C∗(K

i) →
C∗(K

i+1) are induced by the inclusions Ki → Ki+1. Applying the kth homology functor
Hk to each complex, we obtain Hk(C(K)) := {Hk (C(Ki)∗)}i∈N, which has the structure
of persistence module over the ring with which we take coefficients. Furthermore, we
recover the notion of p-persistent kth homology group of Ki. Indeed, denoting by
ηi,pk : Hk(K

i) → Hk(K
i+p) the map induced by the inclusion Ki → Ki+p, we have

im(ηi,pk ) ' H i,p
k (K) [37].

If K is finite, the persistence complex C(K) is of finite type, and thus the homology
Hk(C(K)) is of finite type.

11.7.3. Classification of persistence modules. Given a persistence R-module
(M i, φi,i+1)i, we define a graded module over R[t] by setting

α(M) =
∞⊕
i=0

M i,

where the R-module structure is given by the direct sum of the structures of the
components, and where the action of t is given by the φi,i+1, i.e.

t · (m0,m1, . . . ,mn, . . . ) = (0, φ0,1(m0), φ1,2(m1), . . . , φn,n+1(mn), . . . ).

This correspondence establishes an equivalence between the category of persistence R-
modules of finite type and the category of finitely generated gradedR[t]-modules [38].
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Combining this with the characterisation of finitely generated graded modules, we know
that a persistence module with coefficients in some field K corresponds to a decomposition
akin to (11.7.1) below.

We fix some filtration (Ki)i∈N of a finite complex K. We will be considering finitely
generated (tame) graded modules over the graded ring K[t], where K is some ground
field. The ring K[t] is a principal ideal domain, and thus we have, as a result of a
classification theorem, see [33], that a finitely generated non-negatively graded K[t]-
module is isomorphic to (

n⊕
i=1

ΣkiK[t]

)
⊕

 m⊕
j=1

ΣljK[t]/(thj )

 (11.7.1)

for some n,m and families of natural numbers (ki)i, (lj)j and (hj)j , where Σk denotes a
k-shift in grading.

11.7.4. Barcodes. Using the classification theorem for finitely generated generated
K[t]-modules above, we know that given a N-persistence K-vector space {Vk, ψk,k+1}k,
i.e. a persistence K-module, we can find mi ∈ N and ni ∈ N ∪ {∞} such that

{Vn}n '
N⊕
i=0

U(mi, ni),

where for m ≤ n, U(m,n) is the N-persistence K-vector space such that U(m,n)t = {0}
for t < m and t > n and U(m,n)t = K otherwise. The associated maps ψs,t are given by
the identity whenever m ≤ t ≤ n. This decomposition is unique in the sense that the
collection of pairs {(mi, ni)i } is unique up to the order of the factors. This collection of
pairs is called the barcode associated to {Vn}n. The barcode classifies tame N-persistence
F -vector spaces just as dimension classifies finite dimensional vector spaces.

In summary, calculating the persistent homology of a simplicial complex K with respect
to a filtration (Ki)i thereof goes as follows: First, we obtain a persistence complex
C(K) = {C∗(Ki)}i∈N to which we apply the homology functor. Taking coefficients in a
field K, this then gives Hk(C(K)) := {Hk (C(Ki)∗)}i∈N, a persistence K-vector space.
Finally, from this we calculate a barcode, as described in the next section.

11.7.5. Algorithm for computing persistent homology. Throughout this
section, we denote by {ej} and {êi} to represent homogenous bases for the persistence
F -modules Ck and Zk−1. Denote by Mk the matrix of ∂k in these bases. The usual
procedure for calculating homology is to reduce the matrix to Smith normal form and
read off the description of Hk from the diagonal elements. We compute these bases and
matrix representations by induction on k. For k = 1, the standard basis of C0 = Z0 is
homogenous and we may proceed as usual.

Suppose now that we have a representation Mk of ∂k relative to the standard basis
{ej} of Ck and a homogeneous basis {êi} of Zk−1. For induction, we must compute a
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homogeneous basis for Zk and represent ∂k+1 relative to the computed basis for Zk and
the standard basis of Ck+1.

We begin by sorting the basis {êi} in reverse degree order and then transform the matrix
Mk into column-echelon form M̃k. This is a lower staircase form, the general form of
which is depicted below, in which each landing is of width one, the steps have variable
height. A pivot is the first non-zero value in a column (the boxed entries in the figure)
and a row (resp. column) with a pivot is called a pivot row (resp. column).

∗ 0 · · · 0

∗ 0 · · ·
...

∗ 0 · · ·
∗ 0 · · ·


A result from [120] tells us that the diagonal elements in Smith normal form are the
same as the pivots in column-echelon form and that the degrees of the corresponding
basis elements are also the same in both cases. This gives us the following result:

11.7.6. Proposition ([120]). Let C∗ be a persistence chain complex and let M̃k be the
column-echelon form for ∂k relative to (homogeneous) bases {ej} and {êi} for Ck and
Zk−1 respectively. Each row contributes to the persistent homology Hk−1 of C∗ in the
following way:

− If row i is a pivot row with pivot tn, then it contributes Σdeg êiF [t]/tn.

− If row i is not a pivot row, it contributes Σdeg êiF [t].

where we recall that these contributions correspond to factors in the characterisation
(11.7.1).

Notice that in calculating the column-echelon form, we have only switched column
positions, or replaced a column by linear combinations of others, in such a way as
to preserve homogeneity and degree of corresponding basis elements. Therefore, a
homogeneous basis of Zk is given by the non-pivot (i.e. zero) columns in the column-
echelon form.

Now, if Mk+1 is the matrix of ∂k+1 in the standard bases of Ck+1 and Ck. We know that
MkMk + 1 = 0, and that this is unchanged by elementary operations. The operations
on columns of Mk correspond to operations on rows in Mk+1. These operations zero out
rows in Mk+1 which correspond to pivot columns in Mk and give us a representation of
Mk relative to the standard basis of Ck+1 and the basis we have computed for Zk. This
gives us the following result:

11.7.7. Lemma ([120]). To represent ∂k+1 relative to the standard basis of Ck+1 and
the computed basis for Zk, simply delete rows in the standard presentation of ∂k+1 which
correspond to pivot columns in M̃k.

This concludes the inductive argument, and provides an algorithm for computing persis-
tent homology.



Chapter 12.
Natural homotopy

We consider the directed space X = (X, dX), pictured in Figure 12.1, and invert the
time flow. If we orient the time flow from left to right and from bottom to top, we need
to rotate its representation as a dispace, as shown right of Figure 12.1. The concurrent
processes modelled by these two dispaces should not be considered as the same under
any form of well accepted equivalence. These two concurrent programs actually have
equivalent prime event structure representations, see [59], that are not bisimulation
equivalent [114].

Fajstrup and Hess noted that natural homotopy and homology theories do not distinguish
between these two cases, but produce isomorphic natural systems [87]. We will show that
this problem is solved using the notion of composition pairing recalled in Chapter 11, in
particular see Section 11.3.

X = (X, dX)

S

U
U S

U

S
X ] = (X, dX])

S

U
US

U

S

Figure 12.1: The dispace of a concurrent program and its time-reversed dispace.

First, in Section 12.1, we apply the results from Section 11.1 and 11.2 to the natural
systems defined by the natural homotopy and homology functors. There are essentially
three cases; for n ≥ 3, where we have natural systems of abelian groups, and for n = 2,
we obtain natural systems of groups, so we have check the commutator condition and find
the associated composition pairing. These two cases will be treated together, resulting in
Theorem 12.1.4, whereas the case for n = 1 is handled in Theorem 12.1.3 after defining
the notion of split object in Section 12.1.1. Putting together these theorems, as well
as the correspondence recalled in Section 11.4 from [93], we obtain Theorem 12.1.5,

201
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relating natural homotopy to group objects in a fixed object slice category. We describe
the structure of these objects for natural homotopy and homology in Sections 12.1.6
and 12.1.7, respectively. Finally, in Section 12.1.8, we discuss the fundamental category of
a directed space obstructions for defining natural homotopy and homology on connected
components of path spaces.

In Section 12.2 we begin by formally defining the time-reversal of a dispace in Sec-
tion 12.2.1, and then in Section 12.2.2 we define the notion of (strong) time-reversal of
functors dTop→ Cat with respect to opposition in Cat. We then show that without
composition pairings, the natural homotopy and homology functors associated to a
dispace do not detect time-reversal. This time-symmetry of the original invariants is
the subject of Section 12.2.3. Section 12.2.4 contains the main theorems of this chap-
ter, namely Theorems 12.2.5 and 12.2.6. These express that when equipped with a
composition pairing, the invariants capture are strongly time-reversal. We conclude
Section 12.2 defining a notion of time-reversal relative to the category opNat(Act) of
natural systems of actions and proving Theorem 12.2.8, which states that time-reversal
of a functor dTop→ Cat is equivalent to the notion for opNat(Act).

Finally in Section 12.3, we focus on further enriching natural homotopy by defining a
notion of relative natural homotopy. In particular, we prove Theorem 12.3.2, which
states that a long exact sequence of homotopy groups may be constructed from a
pair (X ,A) of dispaces. We apply this to the special case of fibrations, resulting in
Theorem 12.3.5.

Unless otherwise stated, definitions and results in this chapter are original contributions,
first published in [15].

12.1. Directed homotopy as an internal
group or a split object

In this section we show that for any dispace X , the natural systems
−→
Pn(X ) and

−→
Hn(X )

admit composition pairings. We treat the case
−→
P1(X ) in Theorem 12.1.3 separately

from the the case
−→
Pn(X ) for n ≥ 2 in Theorem 12.1.4. Finally, using the equivalence of

categories stated in Theorem 11.4.3 and what is explained below in Section 12.1.1, we
describe the natural homotopy functor

−→
Pn(X ) as split or group objects in the category

CatX/
−→
P(X ). We also treat the case of the natural homology functors

−→
Hn(X ), for n ≥ 1,

which we describe as internal abelian groups in the category CatX/
−→
P(X ).

12.1.1. Natural systems and split objects. Given a category B, we define the
category of split objects in CatB0/B, denoted by Split(CatB0/B), as the full subcategory
of CatB0/B whose objects are pairs ((C, p), ε), where (C, p) is an object of CatB0/B and
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ε is a morphism of CatB0 such that the following diagram commutes in CatB0

B

idB ((

ε
// C

pwwB

Note that internal groups are split objects. The equivalence of categories stated in
Theorem 11.4.3 from [93] can be adapted to show that there is an equivalence of
categories

NatSysν(B,Set∗) ' Split(CatB0/B).

12.1.2. Composition pairings for natural homotopy. Now we describe the
composition pairings for natural homotopy functors.

12.1.3. Theorem ([15]). The natural system of pointed sets
−→
P1(X ) admits a composi-

tion pairing ν given, for all composable traces f : x→ y, g : y → z of X , by

νf,g([f
′], [g′]) = [f ′ ? g′]

for any [f ′] in π0(
−→
T (X )(x, y), f) and [g′] in π0(

−→
T (X )(y, z), g).

Proof. Observe that the maps νx : {∗} →
−→
P1(X ) for x in X are uniquely determined

since the singleton is the initial object in Set∗. For composable traces f and g of X , the
maps νf,g are well defined and are morphisms of Set∗. Thus, we only have to check the
cocycle, unit, and naturality conditions. The cocycle condition is a consequence of the
fact that the composition is associative. The right unit condition is verified, since for
f : x→ y, the following diagram

−→
P1(X)f

−→
P1(X)f ×

−→
P1(X)1y

νf,1y
oo

−→
P1(X)f × {∗}

id−→
P1(X)f

× νy
OO

∼=

gg

commutes. Indeed, if cy denotes the constant path equal to y, we have [f ] = [f ? cy] =

[f ◦νy(∗)], since [cy] is the pointed element of
−→
P1(X)1y . The left unit condition is similarly

verified. Finally, the naturality condition follows from the associativity of concatenation
of traces. Indeed, the equality

[(u ? f) ? (g ? v)] = [u ? (f ? g) ? v]

holds for any traces u, v, f, g of X such that the composites are defined.

12.1.4. Theorem ([15]). For every n ≥ 2, the natural system of groups
−→
Pn(X ) admits

a composition pairing ν defined by

νf,g(σ, τ) = σ ? τ,
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for all composable traces f : x → y and g : y → z of X and homotopy classes σ in
πn−1(

−→
T (X )(x, y), f) and τ in πn−1(

−→
T (X )(y, z), g), where σ ? τ denotes the homotopy

class in
−→
T (X )(x, z) of the map t 7→ σ(t) ? τ(t).

Proof. First observe that the maps νx, for x in X, are uniquely determined since the
trivial group is the initial object in Gp. Let us prove that

−→
Pn(X ) verifies the commutator

condition recalled in Proposition 11.3.5 . Given composable 1-cells f and g of
−→
P(X ), the

1-cell (1, g) of F
−→
P(X ) induces a map

−→
Pn(X )(1, g) : πn−1(

−→
T (X )(x, y), f)→ πn−1(

−→
T (X )(x, z), f ? g)

sending a class σ in πn−1(
−→
T (X )(x, y), f) to the homotopy class of the map t 7→ σ(t) ? g,

denoted by σ ? g. We obtain a similar homomorphism from the 1-cell (f, 1), sending τ in
πn−1(

−→
T (X )(y, z), g) to the homotopy class of the map t 7→ f ? τ(t), denoted by f ? τ .

Let σ, σ′ in πn−1(
−→
T (X )(x, y), f) and τ, τ ′ in πn−1(

−→
T (X )(y, z), g). The following exchange

relation
(σ ? τ) · (σ′ ? τ ′) = (σ · σ′) ? (τ · τ ′),

where · denotes the product of homotopy classes in homotopy groups, holds in πn−1(
−→
T (X )(x, z), f?

g). Using this relation, we have

(σ ? g) · (f ? τ) = (σ · f) ? (g · τ) = σ ? τ = (f · σ) ? (τ · g) = (f ? τ) · (σ ? g).

for all σ in πn−1(
−→
T (X )(x, y), f) and τ in πn−1(

−→
T (X )(y, z), g). We conclude via the

commutator condition that
−→
Pn(X ) admits a composition pairing, given by νf,g(σ, τ) =

σ ? τ .

12.1.5. Theorem ([15]). Let X = (X, dX) be a dispace. For each n ≤ 1 (resp. n ≥ 2)
there exists a split object CnX (resp. internal group CnX ) in CatX/

−→
P(X ) such that

−→
Pn(X )f = (CnX )f ,

for all traces f of X , and this assignment is functorial in X .

Proof. Using the equivalences of categories recalled in 12.1.1 (resp. in Theorem 11.4.3),
and Theorem 12.1.3 (resp. Theorem 12.1.5) we obtain a split object C1

X (resp. an internal
group CnX ) in CatX/

−→
P(X ) associated to

−→
P1(X ) (resp.

−→
Pn(X ) for n ≥ 2). Let us prove

that this assignment defines a functor

Cn− : dTop→ Cat.

Any morphism ϕ : X → Y of dispaces induces continuous maps ϕx,y :
−→
T (X )(x, y) →

−→
T (Y)(ϕ(x), ϕ(y)) for all points x, y in X such that

−→
T (X )(x, y) 6= ∅. We define a functor

Cnϕ : CnX → CnY on a 0-cell x and a 1-cell (σ, f) of CnX by setting Cnϕ(x) = ϕ(x), and

Cnϕ(σ, f) = (πn−1(ϕx,y)(σ),
−→
P(ϕ)(f)).

Functoriality follows from that of πn−1 and
−→
P .
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12.1.6. Natural homotopy as a split object or internal group. Let us
describe the categories CnX for n ≥ 0. The 0-cells of CnX are the points of X, and the set
of 1-cells of CnX with source x and target y is given by

CnX (x, y) =
∐

f∈
−→
P(X )(x,y)

−→
Pn(X )f .

The projection p onto the second factor extends the category CnX into an object of
CatX/

−→
P(X ).

For n ≤ 1, the functor p is split by εn :
−→
P(X) → CnX defined on any trace f on X by

εn(f) = ([f ], f). Note that for any trace f ,
−→
P0(X )f = { [f ] }, hence ε0(

−→
P(X)) = C0

X . The
composition is defined by

([f ′], f)([g′], g) = ([f ′ ? g′], f ? g),

for all [f ′] ∈
−→
Pn(X )f and [g′] ∈

−→
Pn(X )g. Note that C0

X is isomorphic to
−→
P(X ).

For n ≥ 2, the functor p is split by the identity map η :
−→
P(X) → CnX defined by

η(f) = (1Df , f), where 1Df is the homotopy class of the constant loop equal to f . The
inverse map is given by the inverse in each homotopy group, that is (σ, f)−1 = (σ−1, f).
Recall that the product in CatX/

−→
P(X ) is the fibred product over

−→
P(X ), so we can use

the internal multiplication in each homotopy group to define the multiplication map µ by
setting µ((σ, f), (σ′, f)) = (σ · σ′, f). The composition of (σ, f) and (τ, g), for homotopy
classes σ and τ above f and g respectively, is given by

(σ, f) ?0 (τ, g) = (νf,g(σ, τ), f ? g) = (σ ? τ, f ? g).

12.1.7. Natural homology as internal group. Recall from Remark ?? that as a
consequence of the commutation condition and the triviality of the compatibility criterion
for natural transformations, the categories NatSys(

−→
P(X ),Ab) and NatSysν(

−→
P(X ),Ab)

coincide. For all n ≥ 1, the natural system
−→
Hn(X ) is thus equipped with a composition

pairing, and via the equivalence

Ab(CatX/
−→
P(X )) ∼= NatSysν(

−→
P(X ),Ab)

we obtain an internal abelian group AnX in the category CatX/
−→
P(X ). Moreover, using

similar arguments as in the proof of Theorem 12.1.5, one proves that the assignment
An− : dTop→ Cat is functorial for all n ≥ 1.

12.1.8. Fundamental category of a dispace. The fundamental category of a
dispace X , denoted by

−→
Π(X ), is the homotopy category of

−→
P(X ) when interpreted as a

2-category. Explicitly, the trace category
−→
P(X ) can be extended into a (2, 1)-category by

adding 2-cells corresponding to dihomotopies of traces. The fundamental category is the
quotient of this (2, 1)-category by the congruence generated by these 2-cells. We refer
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the reader to [56, 61] for a fuller treatment of fundamental categories of dispaces. This
assignment defines a functor

−→
Π : dTop→ Cat.

Given a dispace X , consider the quotient functor π :
−→
P(X )→

−→
Π(X ), which is the identity

on 0-cells and which associates a trace f to its class [f ] modulo path-connectedness.
Similarly to [52, Theorem 1], we have the following result.

12.1.9. Proposition ([53]). Given a dispace X , suppose that there exists a functorial
section s of the functor π :

−→
P(X )→

−→
Π(X ). Then the natural system

−→
Pn(X ) is trivial for

all n ≥ 2.

Proof. We show that each trace space is contractible. Let −→t (X ) (resp. −→t (X ) ×[0, 1])
denote the natural system of topological spaces on

−→
Π(X ) which associates the space

[f ] ⊆
−→
T (X )(x, y) (resp. [f ] × [0, 1]) to each class [f ] : x → y. For a dipath g in [f ],

denote by g|[s,r] the restriction of g to the interval [s, r] ⊆ [0, 1]. Now we define a natural
transformation H :

−→
t (X )× [0, 1]⇒ −→t (X ) such that the component H[f ] sends a pair

(g, s) ∈ [f ]× [0, 1] to the dipath

H[f ](g, s)(t) =


g(t) t ∈ [0, s2 ],

s([g|[ s
2
,1− s

2
]]) t ∈ [ s2 , 1−

s
2 ],

g(t) t ∈ [1− t
2 , 1].

Then H[f ](g,−) is a homotopy from g to s([f ]) for every g in [f ]. Thus every connected
component of every trace space of X is contractible.

12.1.10. Remarks. Recall that the homotopy groups πn(X,x) and πn(X, y) of a
topological space X are isomorphic for any path-connected points x and y of X. In
the definition of natural homotopy we consider the homotopy groups of trace spaces−→
T (X )(x, y) based at each trace f . However, choosing a single base-point in each connected
component of each trace space of a dispace X requires a section as described above.
Furthermore, for such a section to give rise to a natural system, it must be functorial. In
this case, the only non-trivial homotopy functor is

−→
P1(X ), and this homotopic information

is provided by
−→
Π(X ): the hom-set

−→
Π(X )(x, y) is equal to π0(

−→
T (X )(x, y)).

Finally, note that natural homology decomposes, for any trace f : x→ y on X , into

−→
Hn(X )f ∼=

⊕
[f ]∈
−→
Π(X )(x,y)

Hn−1([f ])

where Hn−1([f ]) is the (n − 1)th singular homology of the connected space [f ] ⊂
−→
T (X )(x, y).
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12.2. Time-reversal invariance

In this section we study the effect of reversal of time on homotopical and homological
invariants of dispaces. First, in Subsection 12.2.1 we define the notion of time-reversed
dispace and show that natural homotopy and homology are time-symmetric. We then
prove the main result of this section, Theorem 12.2.6 in Section 12.2.4, which states that
the functors Cn− and An− are time-reversal.

12.2.1. Time-reversal in dispaces. Given a dispace X = (X, dX), for any dipath
f in dX, we denote by f ] the dipath defined by

f ](t) = f(1− t),

for all t in [0, 1]. We define its time-reversed dispace, or opposite dispace, as the dispace
X ] = (X, dX]) where dX] is defined by

dX] = {f ] | f ∈ dX}.

Note that dX] is easily verified to be a set of directed paths according to the conditions
listed in 11.6.1. This defines a functor (−)] : dTop→ dTop, sending a dispace X to its
opposite. Notice that if φ : X → Y is a morphism of dispaces, this functor leaves the
continuous map φ : X → Y unchanged, since (φ∗f)] = φ∗(f

]).

12.2.2. Time-reversal properties. A dispace X is called time-symmetric if the
dispaces X and X ] are isomorphic. In that case, by functoriality of

−→
P and Cn−, there

exist covariant isomorphisms

−→
P(X )

∼−→
−→
P(X ]),

−→
Pn(X )

∼−→
−→
Pn(X ]), and CnX

∼−→ CnX ] .

A dispace X = (X, dX) is called time-contractible when dX = dX]. In that case any
dipath is reversible, that is f ∈ dX implies f ] ∈ dX. Note that for a dispace X = (X, dX),
dX = X [0,1] implies that X is time-contractible but the converse is not true in general.
Thus the directed homotopy of a time-contractible dispace X does not necessarily coincide
with the homotopy of its underlying space X as shown in Proposition 11.6.5.

A functor F : dTop→ V is time-symmetric with respect to a category V if the following
diagram

dTop
F
//

(−)]
��

V

=

��

dTop
F
// V

commutes up to isomorphism. Such a functor is strongly time-symmetric with respect to
V if there exists a natural isomorphism F ((−)]) ⇒ F . A functor F : dTop → Cat is
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time-reversal if the following diagram

dTop
F
//

(−)]
��

Cat

(−)o

��

dTop
F
// Cat

commutes up to isomorphism. Such a functor is strongly time-reversal if there exists a
natural isomorphism F ((−)])⇒ F (−)o.

12.2.3. Time-symmetry of directed homology and homotopy. Here we
show that without a composition pairing, natural homotopy and natural homology do
not capture time-reversal.

For any dispace X the equalities

−→
P(X ]) =

−→
P(X )o and

−→
Π(X ]) =

−→
Π(X )o

hold in Cat, hence the functors
−→
P and

−→
Π are strongly time-reversal. The functor which

sends a dispace X to F
−→
P(X ) is strongly time-symmetric with respect to Cat. Indeed,

the isomorphism of categories

F ] : F
−→
P(X )→ F (

−→
P(X ]))

sending a trace f to its opposite f ] and a 1-cell of (u, v) in F
−→
P(X ) to the 1-cell (v], u]),

is the component at X of a natural isomorphism. Note that the functors
−→
Pn and

−→
Hn are

not strongly time-symmetric with respect to opNat(Act).

Consider the category Diag(Act), whose objects are the pairs (C, F ), where C is a
category and F : C → Act is a functor, and whose morphisms are pairs (Φ, τ) : (C, F )→
(C′, F ′), where Φ : C → C′ is a functor and τ : F → F ′Φ is a natural transformation, with
natural composition. By definition, the functors

−→
Pn and

−→
Hn are strongly time-symmetric

with respect to Diag(Act).

For n ≥ 0, we compare the functors
−→
Pn(X ) and

−→
Pn(X ]) in NatSys(

−→
P(X ),Act) by

precomposing the latter with the isomorphism F ]. Observe that, for all points x, y in X,
we have homeomorphisms

αx,y :
−→
T (X )(x, y)→

−→
T (X ])(y, x)

sending a trace f to its opposite f ]. These induce group isomorphisms
−→
Pn(X )f

∼−→
−→
Pn(X ])f] for all n ≥ 2. By definition, (F ])∗

−→
Pn(X ])f =

−→
Pn(X ])f] , so we get components

of a natural isomorphism

αf :
−→
Pn(X )f −→ (F ])∗

−→
Pn(X ])f

[σ] = [(s, t) 7→ σs(t)] 7−→ [(s, t) 7→ σs(1− t)] =: [σ]],
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where s is the parameter for the loop in the trace space, and t is the parameter for the
dipath σs. Thus the pair (F ], α) is an isomorphism in the category Diag(Gp). Such
an isomorphism can similarly be established in the category Diag(Set∗) for natural
homotopy in the case n = 1. The functor F ] and the isomorphisms are components
at X of natural isomorphisms, hence

−→
Pn is strongly time-symmetric with respect to

Diag(Act) for all n ≥ 1.

A corresponding isomorphism for natural homology,
−→
Hn(X ) ∼=

−→
Hn(X ]), can be similarly

established in Diag(Ab) using the functor F ] and the homeomorphisms αx,y, showing
that

−→
Hn is strongly time-symmetric with respect to Diag(Ab) for all n ≥ 1.

12.2.4. Time-reversibility of natural homotopy. Here we show that equip-
ping natural homotopy and natural homology with composition pairings has solved
the problem of non-detection of time-reversal. This is expressed by Theorems 12.2.5
and Theorem:MainTheoremA.

Following Theorem 12.1.5, the category CnX with the projection p : CnX →
−→
P(X ) onto the

second factor is an internal group in CatX/
−→
P(X ). On the other hand, the category CnX ]

obtained from the natural system
−→
Pn(X ]) via the construction given in 12.1 has 0-cells

x ∈ X, while 1-cells are of the form (σ], f ]) : y → x where σ] ∈
−→
Pn(X ])f] and f ] : y → x

is a trace in X ]. Composition is given by

(τ ], g]) ?
Cn
X]

0 (σ], f ]) = (τ ] ? σ], g] ? f ]).

We denote the associated projection by p]. We define for n ≥ 2

In(X ) : CnX ] → (CnX )o,

the isomorphism of categories which is the identity on 0-cells, and which sends a 1-cell
(σ], f ]) of CnX ] to (σ, f)o. The functoriality of In(X ) follows from the equality

(τ ], g]) ?
Cn
X]

0 (σ], f ]) = (τ ] ? σ], g] ? f ]) = ((σ ? τ)], (f ? g)]).

The opposite group (CnX )o can be interpreted as an internal group in CatX/
−→
P(X ])

by composing the projection po : (CnX )o →
−→
P(X )o with the canonical isomorphism

−→
P(X )o '

−→
P(X ]). We denote by p̃o this composition. Then the following diagram

commutes

CnX ]
In(X )

//

p]
!!

(CnX )o

p̃o{{−→
P(X ])

We thereby deduce that In(X ) is a morphism of CatX/
−→
P(X ]). Furthermore, it is a group

isomorphism, since the fibre groups above a 1-cell f ] of
−→
P(X ]) are isomorphic:

(CnX )of] = (CnX )f =
−→
Pn(X )f ∼=

−→
Pn(X ])f] = (CnX ])f] .
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An isomophism C1
X ]
∼= (C1

X)o can similarly be established in the category Split(CatX/
−→
P(X ])).

We have thus proved the following result.

12.2.5. Theorem ([15]). Given a dispace X = (X, dX), CnX ] and (CnX )o are isomorphic
in Gp(CatX/

−→
P(X ])) for all n ≥ 2, and in Split(CatX/

−→
P(X ])) for n = 1. In particular,

the functors Cn− are time-symmetric for all n ≥ 1.

For any n ≥ 0, the functors In(X ) give components of a natural transformation. Indeed,
by precomposing (resp. composing) the functor Cn− with (·)] (resp. (·)o), any morphism
φ : X → Y of dispaces yields a commuting diagram

CnX ]

Cnφ]
��

In(X )
// (CnX )o

(Cnφ)o

��

CnY] In(Y)
// (CnY)o

in Cat. Furthermore, as shown above, these components are all isomorphisms, that is
there exists a natural isomorphism

In : Cn(−)] =⇒ (Cn−)o.

We have thus proved the following result.

12.2.6. Theorem ([15]). For any n ≥ 0, the functor Cn− : dTop → Cat is strongly
time-reversal.

A consequence of Theorem 12.2.6 is that for any dispace X , the category CnX is dual to the
category CnX ] . It can similarly be shown that the functor An− : dTop→ Cat associated
to natural homology is strongly time-reversal for all n ≥ 1. In the particular case of
a time-symmetric space X , the category CnX is self-dual, i.e. there exists a covariant
isomorphism of categories

CnX ∼= (CnX )o.

12.2.7. Time-reversibility with respect to opNat. The time-reversibility of
a functor with values in Cat is expressed via duality of categories. However, given some
category V, we can define a notion of time-reversal with respect to opNat(V) which
is compatible with the interpretation of natural systems with composition pairings as
categories when V = Act. Consider the functor

(−)[ : opNat(V)→ opNat(V)

which sends a pair (C, D) to the pair (Co, (F o)∗D), where F o : F (Co) → FC is the
covariant functor sending a 0-cell fo of FCo to f , and a 1-cell (vo, uo) to (u, v). To a
morphism

(Φ, α) : (C, D)→ (C′, D′)
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of opNat(V), the functor (−)[ associates the morphism (Φo, αo), where Φo is the opposite
functor Co → (C′)o, and where the component αofo at fo a 1-cell of Co is the component
αf of α at f .

Then for F a functor dTop→ opNat(V), we say that F is time-reversal with respect to
opNat(V) if the following diagram

dTop
F
//

(−)]
��

opNat(V)

(−)[
��

dTop
F
// opNat(V)

commutes up to isomorphisms of the form (id, α). Explicitly, this means that if F (X ) =
(C, D), then F (X ]) = (Co, D′) with (F o)∗D naturally isomorphic to D′.

Given F a functor dTop→ opNatν(Act), we can extend to the following diagram

dTop
F
//

(−)]
��

opNatν(Act)

(−)[
��

E
// Cat

(−)o

��

dTop
F
// opNatν(Act)

E
// Cat

(12.2.1)

where the functor E : opNat(Act) → Cat sends a pair (C, D, ν) to the category in
CatC0/C defined using the constructions described in Theorem 11.4.3 and Section 12.1.1.
The rightmost square commutes strictly. Indeed, denoting by E(C,D,ν) the category
obtained from the natural system (D, ν) on the category C, we have that E(C,D,ν)[ is the
category with the same 0-cells as Co and in which 1-cells are defined via the hom-sets

E(y, x) =
∐

fo∈Co(y,x)

Df ,

since by definition, D[
fo = Df . On the other hand, E(C,D,ν) has the same 0-cells as C and

1-cells are defined via the hom-sets

E(x, y) =
∐

f∈C(x,y)

Df .

Thus E(C,D,ν)[ coincides with Eo(C,D,ν). Hence, if the leftmost square in diagram (12.2.1)
commutes up to isomorphism, then the outer square commutes up to isomorphism. This
proves the following result.

12.2.8. Theorem ([15]). Any functor F : dTop → opNatν(Act) which is time-
reversal with respect to opNat(Act) can be extended into a time-reversal functor E ◦ F :
dTop→ Cat.
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12.3. Relative directed homotopy and exact
sequences

In this section, we introduce a notion of relative homotopy for dispaces, and establish a
long exact sequence, as in the case of regular topological spaces, using the homological
category structure on Act as introduced by Grandis in [62]. See Section 11.5 for
definitions and results concerning exact sequences in the category of actions.

12.3.1. Long exact sequence of relative natural homotopy. We endow the
category NatSys(

−→
P(A),Act) with the structure of a homological category by letting

null morphisms be those natural transformations which are null component-wise in Act.
A sequence of natural systems of actions is then exact when it is point-wise exact in
Act. As a consequence we obtain the following long exact sequence of natural homotopy
systems:

12.3.2. Theorem ([15]). Let X be a dispace and A be a directed subspace of X . There
is an exact sequence in NatSys(

−→
P(A),Act):

· · · →
−→
Pn(A) →

−→
Pn(X ) →

−→
Pn(X ,A)

∂n→
−→
Pn−1(A) → · · ·

· · · →
−→
P2(A)

v→
−→
P2(X )

f→ (
−→
P2(X ,A),

−→
P2(X ))

g→
−→
P1(A)

h→
−→
P1(X ) →

−→
P1(X ,A) → 0.

12.3.3. Dicontractible subspaces. A dispace X is called dicontractible if all its
natural homotopy functors

−→
Pn(X ) are trivial, e.g. are constant functors into a singleton

for n = 1 or a trivial group for n ≥ 2. Following Theorem 12.3.2, if A is a dicontractible
directed subspace of X , then we have an isomorphism

−→
Pn(X ) '

−→
Pn(X ,A),

in NatSys(
−→
P(A),Gp) for all n ≥ 3. Note that when (X, dX) is the geometric realiza-

tion of a non-self-linked precubical set (a large class of precubical sets, in which e.g.
the semantics of concurrent systems can be expressed, see [43] for more details), the
dicontractibility condition is equivalent to asking that all path spaces are contractible,
since, by Proposition 3.14 of [98], all its trace spaces have the homotopy type of a
CW-complex.

12.3.4. A long exact fibration sequence in directed topology. Recall that a
morphism ϕ : X → Y of dispaces induces a natural tranformation −→ϕ :

−→
T ∗(X )⇒

−→
T ∗(Y).

We consider morphisms p : E → B of dispaces such that each component −→p e is a fibration,
for every e a dipath of E . We define the associated natural system of fibres, denoted−→
T ∗(F), as the natural system of pointed topological spaces on

−→
P(E) which sends a dipath

e to −→
T (F)e =

(−→p −1
e (p(e)) , e

)
.
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Now for each 1-cell e of
−→
P(E), denote by

−→
Pn(F)e (resp.

−→
Pn(E ,F)e) the homotopy group

(resp. relative homotopy group)

πn−1

(−→
T (F)e

)
(resp. πn−1

(−→
T (E)e,

−→
T (F)e

)
).

These are natural systems on
−→
P(E). Furthermore, for each e dipath of E , the se-

quence −→
T (F)e →

−→
T (E)e →

−→
T (B)p(e)

of topological spaces induces a long exact sequence of homotopy groups. Extending
this to lower-dimensional homotopy groups via [62, Theorem 6.4.9] yields the following
result.

12.3.5. Theorem ([15]). Let p : E → B be a morphism of dispaces inducing (Serre)
fibrations −→p e for every 1-cell e of

−→
P(E). Then we obtain a long exact sequence in

NatSys(
−→
P(E),Act):

· · · →
−→
Pn(F) →

−→
Pn(E) →

−→
Pn(E ,F)→

−→
Pn−1(F) → · · ·

· · · →
−→
P2(F)→

−→
P2(E)→

(−→
P2(E ,F) ,

−→
P2(E)

)
→
−→
P1(F)→

−→
P1(E) →

−→
P1(E ,F) → 0.

Furthermore,
−→
Pn(E ,F) ∼= p∗(

−→
Pn(B)) for all n ≥ 2. In particular, when

−→
T ∗(B)p(e) is path

connected for all dipaths e of E, the isomorphism holds for all n ≥ 1.

12.3.6. Example. Given a morphism p : E → B of dispaces, if the continuous map
p : E → B is a fibration, then p induces fibrations −→p e of trace spaces. Indeed, for all
x, y in X given maps ϕ and h such that the following diagram commutes

X
ϕ

//

idX×{0}
��

−→
T (E)(x, y)

−→p e
��

X × [0, 1]
h

//
−→
T (B)(p(x), p(y))

we obtain the following commutative diagram

X × [0, 1]
Φ

//

idX×[0,1]×{0}
��

E

p

��

(X × [0, 1])× [0, 1]
H

// B

where Φ(z, t) = ϕ(z)(t) and H((z, t), s) = hs(z)(t) for all z in X and s, t in [0, 1]. Since by
hypothesis the map p is a fibration, there exists a unique map H̃ : (X× [0, 1])× [0, 1]→ E

such that H̃((z, t), 0) = Φ(z, t). Defining the map h̃ : X×[0, 1]→
−→
T (E)(x, y) by sending

(z, s) to the dipath t 7→ H̃((z, t), s) yields a continuous map which is the unique lift of h
such that h̃(z, 0) = ϕ(z).
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From this we deduce that given a dispace B and a fibration p : E → B, we obtain
a morphism of dispaces from E to B inducing fibrations on trace spaces by setting
E = (E, dE) where dE = {e ∈ E[0,1] | p ◦ e ∈ dB}.



Chapter 13.
Persistence and natural homology

Geometry and Algebraic Topology have now been in the computer science landscape for
many years. In topological data analysis for instance, the shape of a point-cloud can be
hinted at through suitable homological invariants, known as persistent homology (see e.g.
[34], and [20] for a survey of the earlier days of persistence). These invariants capture the
essential features of the point-cloud data, in that these are independent to the metrics
used, robust to noise, and compact in their presentation. Similar ideas appeared in the
realm of semantics of programming languages, and in particular in concurrency theory
[54, 55] and distributed computing [72] (see e.g. [43, 62, 73] for surveys), at about the
same time or slightly before.

In this chapter we make a formal bridge between these two approaches and show the
interest of applying persistence to problems in concurrency theory and distributed
computing, though a motivational example. It contains original contributions from
ongoing work. We study links between natural homology and persistent homology, the
latter being tractable in the uni-dimensional case. First, in Section 13.1, we consider
an example and discuss obtaining filtrations, the starting point for persistent homology,
from directed spaces.

In Section 13.2, we show that natural homology is in fact a persistence object. This
is essentially due to the observation that the factorisation category of the trace cate-
gory of a partially ordered space is a poset; this is given in Lemma 13.2.2. Next, in
Proposition 13.2.6 we show that each trace yields a uni-dimensional persistent homology
module. We apply this to the motivational example in Section 13.2.7 before turning to
the question of amalgamating this uni-dimensional information. This is addressed in
Section 13.3, but first we prove some results concerning colimits of posets, the first of
which, Proposition 13.3.2 is folklore, and the second of which, Proposition 13.3.3 refines
the construction in the case of chains.

Next, in Section 13.3.4, we apply similar colimit constructions to functors whose domains
are posets and whose codomains are a fixed category C. This gives Proposition 13.3.5,
which states that a functor D : P → C from a poset P to a cocomplete category C
may be calculated as the colimit of its restrictions to subposets when the colimit of the
subposets gives P . As corollaries of the preceding propositions, we obtain the main
theorem of this chapter, which states that the natural homology of partially ordered

215
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spaces is recovered as a colimit of persistence modules in various ways. This is given by
Theorems 13.3.7.

13.1. The matchbox example

To give a glimpse of the intimate relationship between multidimensional persistence and
natural homology, let us describe our construction on Fahrenberg’s matchbox example
[40], pictured left below (all but the bottom face of the unit cube [0, 1]× [0, 1]× [0, 1] is in
the cubical complex, i.e. there are 5 squares glued together). Recall from Section 11.6.1
that a trace is the equivalence class p of a dipath p modulo monotonic and continuous
reparametrization, and the set of such equivalence classes can be given the structure of
a topological space

−→
T (K)(a, b) for all start (resp. end) points a (resp. b), homotopic

to a CW-complex for a large class of geometric realizations of pre-cubical sets. Using
Ziemiański’s construction [119], the CW-complex (or simplicial set as well in this case)
corresponding to its trace space from beginning to end is shown below, where the edges
A, B, C, D and E correspond to the 5 2-dimensional cubical paths shown in the picture
below :

γ δ

β ε

α ζ

A

B C

E D

A B C D E

and the vertices α, β, γ, δ, ε and ζ correspond to the 6 1-dimensional dipaths :

ζ ε α β δ γ

Note that β is the geometric intersection of B with E, γ is the geometric intersection of
B with A etc. leading indeed to the simplicial set pictured right-hand side of the first
figure.

In order to apply persistent homology, we need to obtain a (multi-dimensional) filtration
from this directed space, i.e. a map from some poset P such as N2 to the category of
simplicial sets. One could think that such a filtration could be obtained by moving the
end-points a and b associated to a trace space

−→
T (K)(a, b). However, as we illustrate

below, there is no canonical way of obtaining such a filtration in general; we must use
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extensions along traces to define inclusion maps.

There are maps from
−→
T (K)(a, b) to

−→
T (K)(a,′ )b′, for a ≤ a′ and b′ ≤ b that act as

restriction maps : they just “cut” the combinatorial dipaths so as to only keep the parts
(if any) that go from a′ to b′. Hence, we get a decreasing sequence of simplicial sets
as soon as any of the three coordinates of a increase or any of the three coordinates
of b decrease. Below, we have represented the part of the multidimensional filtration
generated, for the vertical coordinate of b (the end point) and of a (the starting point) ;
recall also that the 5 squares are here unit squares and the lower coordinates are 0, upper
ones are 1. In this filtration, the restriction maps acting on combinatorial dipaths should
correspond to inclusion maps from bottom to top, and from left to right, of simplicial
sets representing the corresponding trace spaces.

For instance, moving the end point b from vertical coordinate 1 to 0 while keeping vertical
coordinate of a at 0 (right column in the table below), the only 1-dimensional paths
going through coordinate 0 for b are α and ζ, hence all other vertices (and edges) have
to disappear. This induces the upwards inclusion map from the two point simplicial set
(α and ζ) into the connected simplicial set above : H0 of these simplicial sets goes from
Z2 to Z, “killing” one component when extending paths to reach the end point of the
matchbox. This corresponds, in the natural homology diagram

−→
H 1(K), to part of the

diagram being a projection map from Z2 to Z when moving b to the endpoint of the
matchbox, while keeping the starting point fixed at the initial vertex.

b/a 1 0

1

γ δ
A

B C

E D

γ δ

β ε

α ζ

A

B C

E D

0 ∅

γ δ

β ε

α ζ

A

B C

E D

The reason that we obtain an inclusion map from bottom to top in this case is because
there is a unique map from the point (1, 1, 0) to the point (1, 1, 1). When there is a choice
between maps, we no longer obtain a canonical inclusion map. Indeed, consider the case
in which a = (0, 0, 0), the initial point, b′ = (1, 1, 0) and b = (1, 1, 1), the terminal point.
There are two extension maps from

−→
T (K)(b′, b) to

−→
T (K)(a, b), one by precomposition by

the trace of ζ, and one by precomposition by the trace of α. These will produce different
homology maps once the invariant is applied.

Therefore there is no canonical multi-dimensional filtration of the trace spaces which
depends only on start and end points. More generally, it is easily seen that such a
multi-dimensional filtration for studying a directed space X would exist only if we had
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a way to associate in a continuous manner, to each pair of points α and β, a directed
path going from α to β. It is well-known that indeed, such a continuous map will only
exist if X is contractible in a directed manner, i.e. is trivial, see e.g. [53], and see
Proposition 12.1.9.

The objective of this chapter is to cope with this difficulty, in order to give a meaning to
natural homology as persistent homology. We will use the directed structure of a pospace
to obtain unidimensional persistence homologies, and glue this information together to
obtain the whole natural homology diagram. In many ways, this resembles "probing"
approaches in multi-dimensional persistent homology, see e.g. [26].

13.2. Natural homology as a persistence
object

13.2.1. Posets of directed paths. Consider a directed space X = (X, dX) and
its trace category

−→
P(X ). We define a relation on traces in X by

f ≤ g ⇐⇒ ∃ u, v ∈ dX, g = ufv.

We recall that a pospace X = (X,≤X) consists of a Hausdorff topological space X and a
partial order ≤X which is closed in the product topology X ×X. Pospaces are naturally
interpreted as directed spaces by equipping them with the set of increasing paths dX
from the unit interval, with its usual ordering, to X.

13.2.2. Lemma. In any directed space, this defines a pre-order. In a pospace, it is a
partial order relation.

Proof. Since constant paths are directed, the relation is reflexive, and we have transitivity
by associativity of concatenation of traces. Indeed, if f ≤ g and g ≤ h, there exist
extensions (u, v) and (u′, v′) such that

f = ugv and g = u′hv′.

Thus, f = u(u′hv′)v = (uu′)h(v′v), i.e. f ≤ h. In the case of a loop-free directed space,
we also need to prove anti-symmetry of ≤. Consider f, g ∈ dX such that f ≤ g and g ≤ f .
By definition there exist extensions such that f = ugv and g = u′fv′. Thus f = uu′fv′v,
so uu′ and vv′ are loops, and must therefore be constant paths. By Theorem 13.2.3
below, this means that the image of both uu′ and v′v are the singleton space, meaning
that the image of each of the dipaths u, u′, v, v′ are the singleton space, i.e. these are all
constant paths, concluding the proof.

This poset, denoted by P(X), will be called the trace poset of (X,≤X). Consider a
pospace X = (X,≤). We know from [71] that dipaths in X are characterized by their
image:
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13.2.3. Theorem (Thm. 3.15 of [71]). The image of a dipath in a pospace is iso-
morphic to either the directed unit interval or the singleton space.

The above results essentially state that two dipaths are equal modulo reparametrisation
if and only if they have the same image, and that this induces a partial ordering on
traces. In particular, we obtain the following result:

13.2.4. Proposition. For a pospace X , P(X ) is isomorphic to F
−→
P(X ).

Proof. By the above theorem, we have

ufv = u′fv′ ⇐⇒ u = u′ and v = v′,

meaning that there is at most one extension between any two traces.

This allows us to interpret natural homology as a functor on a poset, i.e. as a persistence
object. Indeed, in a pospace X , the ith natural homology diagram associated to X is
a P(X )-persistence group. Taking coefficients in a field K, we obtain P(X )-persistence
K-vector spaces.

13.2.5. Persistent homology along a trace. Let f be a trace in X a pospace
for which we have fixed some parametrisation f . For a given point αf in the image of f ,
denote by [αf , f ] the interval between αf , identified with the constant trace f(t0) = αf
for some t0 ∈ [0, 1], and f in the poset P(X ). In other words, [αf , f ] corresponds to
traces p in P(X ), such that αf ≤ p ≤ f .

Given parametrisations of [0, t0] and [t0, 1] within [0, 1] via maps γ− : [0, 1] → [0, t0]
and γ+ : [0, 1] → [t0, 1] respectively, we denote by sfs the trace of f restricted to
[t0 − γ−(s), t0 + γ+(s)]. We thus obtain a [0, 1]-persistence simplicial complex {K(sfs)}s
by applying the trace diagram functor. This is a filtration of the trace space associated
to f . Notice that we are always considering a chain in the poset of traces from the
constant trace f(0), f(1), or f(t0) to f . We call such filtrations initial (resp. terminal)
point filtrations when αf = f(0) (resp. αf = f(1))

Taking some order preserving map N→ [0, 1], we obtain N-persistence simplicial com-
plexes from the above constructions. In all cases, we obtain a chain c = (fi)i∈N in the
interval [αf , f ] and define the persistent homology along f with respect to c as a functor
from N, seen as the poset category (with the usual ordering) to the category of abelian
groups or K-vector spaces, associating i ∈ N to:

−→
H k(f, c)i :=

−→
H k(X )fi

where we recall that
−→
H k(X )fi is the natural homology in dimension k of X of the trace

space associated to fi.

To make the construction above more clear, we will show explicitly how to find the
homology along a trace by restriction of the natural homology diagram. Recall that in a
pospace X , the trace poset P(X ) and the factorisation category of the trace category
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F
−→
P(X) are isomorphic, so we may view natural homology

−→
Hn(X ) as a functor on P(X )

with values in the category Ab or VectK. In practice, persistent homology is defined
by taking homology with coefficients in a field K, whereas natural homology generally
considers more general abelian group coefficients. We will restrict in all practical cases
to homology with coefficients in K so as to make comparisons possible.

13.2.6. Proposition. Let X = (X, dX) be a loop-free directed space and f a trace in
X . Let (fi)i∈N be a chain in the interval [αf , f ] in the poset of traces. Restricting the
natural homology functor

−→
Hn(X ) to the chain (fi)i∈N, we obtain a persistence K-vector

space
−→
Hn(X )fi indexed by the chain (fi)i∈N.

13.2.7. Example: persistent homology of the matchbox. Consider the case
of the matchbox example presented in Section 13.1. Let us calculate the persistent
homology along each of its maximal traces, starting at the initial point and extending
into the future. We fix some field K and will proceed via the method developed in [120].
To each of the maximal traces α, β, γ, . . . , pictured in Section 13.1, we associate a
sequence of subtraces corresponding to a decomposition of the trace along each 1-cube in
the matchbox. For example, the trace α is decomposed into the chain

α0 ≤ α1 ≤ α2 ≤ α3 = α,

where α0 is the constant path equal to (0, 0, 0), which α1 extends to (0, 1, 0). This trace
is further extended to (0, 1, 1) obtaining α2, and then finally extended to (1, 1, 1) giving
the total trace α. A similar decomposition, which we will denote with the same indices,
can be found for each of the maximal traces. This sequence of traces gives a filtration
of the simplicial complex pictured above. In the case of α, we obtain the following
filtration:

α0 α1 α2 ζ2

γ A δ C

β

B

E

ε

C

Dα ζ

K(α0) K(α1) K(α2) K(α3)

We extend this filtration into a N-persistence simplicial complex by considering copies of
K(α3) for all i ≥ 4. We denote by C∗(K(αi)) the chain complex over K obtained from
the simplicial complex K(αi), obtaining a N-persistence chain complex

C∗(K(α0))
f0,1
// C∗(K(α1))

f1,2
// C∗(K(α2))

f2,3
// C∗(K(α3))

f3,4
// · · ·

where fn,n+1 are induced by the inclusions of simplicial sets given by the filtration. For
each natural number p, we denote by H i

p the pth homology group of C∗(K(αi)), thus
obtaining a sequence of homology groups

H0
p

φ0,1
// H1

p

φ1,2
// H2

p

φ2,3
// H3

p

φ3,4
// H3

p

φ4,5
// · · ·

φn−1,n
// H3

p

φn,n+1
// · · · ,
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where the φn,n+1 are identities for n ≥ 3. This is in fact an N-persistence K-vector space.
We define a non-negatively graded module over K[t] by setting

Hp :=

(
2⊕
i=0

H i
p

)
⊕

( ∞⊕
i=3

H3
p

)
,

and defining the action of t by t · (hi)i = (φi,i+1(hi))i, where the hi belongs to H i
p, see

Section 11.7.3.

We will calculate the graded module of persistent homology via matrix representations
of the boundary maps ∂k associated to the persistence chain complex C∗(K(αi)) as
described in [120], see Section 11.7.5. We calculate H0(α), the 0th persistent homology
along α. For this, we fix homogeneous bases for Z0 and C1. Since Z0 = C0, we may
take the standard basis in both cases. Thus, for C0 we obtain the basis {α0, ζ2, β, γ, δ, ε},
and for C1 we obtain the basis {A,B,C,D,E}. We now calculate the matrix of ∂1 with
respect to these bases, taking care to order the basis of C0 in reverse degree order:

B A C D E

β -1 0 0 0 1
γ 1 -1 0 0 0
δ 0 1 -1 0 0
ε 0 0 1 -1 0
ζ2 0 0 0 t 0
α0 0 0 0 0 −t3

We now calculate the column-echelon form of the above matrix, obtaining

B A C D E′

β -1 0 0 0 0
γ 1 -1 0 0 0
δ 0 1 -1 0 0
ε 0 0 1 -1 0
ζ2 0 0 0 t t
α0 0 0 0 0 −t3

where E′ = A+B + C +D + E. In the case of the persistent homology along α, we see
that the first four rows contribute nothing to the description of H0(α), and that the last
two contribute Σ2K[t]/t and K[t] respectively, i.e.

H0(α) ∼= K⊕K⊕K2 ⊕K⊕ · · · ⊕K⊕ · · ·

We obtain a similar result for the persistent homology along ζ. Below are the standard



222 CHAPTER 13. PERSISTENCE AND NATURAL HOMOLOGY

and column-echelon forms of ∂1 in this case:

B A C D E

β -1 0 0 0 1
γ 1 -1 0 0 0
δ 0 1 -1 0 0
ε 0 0 1 -1 0
ζ2 0 0 0 0 −t
α0 0 0 0 t3 0

B A C D E′

β -1 0 0 0 0
γ 1 -1 0 0 0
δ 0 1 -1 0 0
ε 0 0 1 -1 0
ζ2 0 0 0 0 −t
α0 0 0 0 t3 t3

We therefore obtain the same isomorphism class for H0(ζ) as we did in the case of
α:

H0(ζ) ∼= K⊕K⊕K2 ⊕K⊕ · · · ⊕K⊕ · · ·

The other four dipaths yield a simple persistent homology. Indeed, there is only one class
which persists throughout the sequence. Indeed, along β for example, a homogeneous
basis of C0 is {β0, γ2, ε, ζ, δ, α}. The basis for C1 is the same, but now B has degree two
rather than three. We obtain the following matrix representation of ∂1:

E A C D B

α −1 0 0 0 0
δ 0 1 −1 0 0
ζ 0 0 0 1 0
ε 0 0 1 −1 0
γ2 0 −t 0 0 1
β0 t3 0 0 0 −t2

E A D A+ C B

α −1 0 0 0 0
δ 0 1 0 0 0
ζ 0 0 1 0 0
ε 0 0 −1 1 0
γ2 0 −t 0 −t 1
β0 t3 0 0 0 −t2

We indeed see that the graded module H0(β) is simply K[t], since all pivots are of degree
zero and there is one non-pivot row.

13.2.8. Natural homology of the matchbox. Now we describe the restriction
of the natural homology diagram of the matchbox to the principal upset in P(X ) given
by the constant path at the initial point (0, 0, 0). The following diagram depicts the
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Hasse diagram of this upset:

0

γ1 = δ1α1 = β1 ε1 = ζ1

β2 γ2 δ2 ε2α2 ζ2

β3 γ3 δ3 ε3α3 ζ3

Traces in the same red circle yield the same trace space, i.e. have the same beginning
and end points. Each line corresponds to an extension. The natural homology diagram
is depicted below, the arrows being induced by extensions:

K

K

77

K2

OO

K

gg

K

OO 77

K

gg 77

K

OOgg

K

66OOhh

Each path of length 3 in the above diagram corresponds to the persistence vector space
obtained by taking the persistent homology along one of the maximal traces. Note that
since none of the maps depicted in the diagram are identically zero, the only maps which
are not uniquely defined are those with codomain K2.

13.3. Recovering natural homology from
persistence

Here we show how the uni-dimensional persistence vector spaces we obtained along
traces in the previous section may be amalgamated in order to recover the whole natural
homology diagram, or subdiagrams thereof. First, we must state some facts about posets
and functor categories.
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13.3.1. Colimits of chains in posets. Note that in general, using exclusively
maximal chains is not enough to reconstruct a poset. Indeed, consider the poset whose
Hasse diagram is depicted below:

z

y1

>>

y2

``

x

>>``

Its maximal chains are (x, y1, z) and (x, y2, z). In order to obtain the whole poset as a
colimit, we additionally need the inclusions of x and z into these chains.

While a poset is in general, not the colimit of its maximal chains, it is the colimit of all
of its chains. Given a poset P , we consider the full subcategory ChP of Posin consisting
of the chains of P , called the poset of chains. The diagram of chains associated to P is
the inclusion functor FP : ChP → Pos. We have:

13.3.2. Proposition. For any poset P ,

colimFP = P.

Proof. The colimit of FP is computed as follows, in Pos: first we take the coproduct of
all chains of P , which is the union of all sub-linear orders (xji )i∈I of P where j ranges
over all chains of P , for some indexing family I and xji ∈ P for all i ∈ I. Then we
identify all common subchains within the (xji )i∈I , in particular the elements themselves.
Therefore we identify all xji within these linear orders that have to be identified, and
take the transitive closure of the corresponding orders. This is indeed poset P .

When considering exclusively maximal chains, we may obtain P by adding certain
intersections thereof. This can be done in two ways: either by taking full intersections or
restricting to intersections which are chains. In the latter approach, the colimit is of a
functor whose domain is a subcategory of ChP , whereas in the former, the posets used
in the colimit are not necessarily chains.

Consider a (finite) poset P and two maximal chains C1, C2 of P . The pullback of C1, C2

in Pos corresponds to the full sub-poset of P given by the intersection C1∩C2. Denote by
pmChP the subcategory of Posin consisting of maximal chains in P and their pullbacks.
By maximality of the considered chains, this category looks like a zig-zag.

A chain quasi-pullback of two chains C1 and C2 in P is a chain C12 such that C12 → C1, C2

in Posin and such that for any chain C ′ → C1, C2, there exists C ′ → C12 in Posin. This
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is summed up in the diagram below:

C1

��

C ′

33

++

∃ // C12

==

!!

P

C2

??

The category ChP of chains in P is closed under quasi-pullback. Indeed, the poset
induced by the intersection C1 and C2 is a collection of chains. The maximal chains of
this intersection are precisely the quasi-pullbacks of C1 and C2. Consider the (discrete)
subcategory of Posin consisting of the maximal chains in P . The completion of this
category by chain quasi-pullbacks is denoted by mChP . It is a subcategory of ChP .

Compiling all of this, we obtain the following result:

13.3.3. Proposition. A poset P is the colimit of the following inclusion functors:

− The minimal (completed) diagram of maximal chains

pmCh→ Pos.

− The (completed) diagram of maximal chains

mCh→ Pos.

Proof. These follow the same schema as the proof of Proposition 13.3.2.

13.3.4. Application to diagrams. Now that we have assembled information on
colimits of chains, we will see how these constructions carry over to colimits of diagrams
over chains. We fix a category C.

First, we introduce a category representing persistence objects of a certain type C, without
fixing the indexing poset. Specifically, this category, denoted by Pers(C), has for objects
pairs (P, F : P → C) where P is a poset (i.e. F is a P -persistent C-object). A morphism
from (P, F : P → C) to (Q,G : Q→ C) is a pair (φ, σ) where φ is a morphism P → Q of
Pos and σ is a natural transformation F ⇒ G ◦ φ:

P
φ

//

F
��

P ′

G
��

σ 0D

C

Composition of morphisms is given by (ψ, τ) ◦ (φ, σ) = (ψ ◦ φ, τφ ◦ σ), and the identity
on (P, F ) is the pair (1P , 1F ). We denote by IsoPers(C) the subcategory of Pers(C) in
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which we only take morphisms (φ, σ) such that σ is a natural isomorphism. Compare
this with the category of natural systems, recalled in Section 11.2.1.

We say that a category C is poset complete (resp. poset co-complete) if any functor Φ→ C,
where Φ is a poset, has a limit (resp. colimit) in C. The following result states that when
C is poset (co-)complete, we can reconstitute a diagram on a poset via a colimit on the
poset itself.

Let P be a poset and consider an inclusion G : Φ → Posin, where Φ is a category of
sub-posets of P and inclusions, such that colim

Φ
G = P . Suppose that we are given a

functor D : P → C, i.e. an object of Pers(C). Since the colimit of G is P , for each
p in Φ, we have an inclusion ip : Pp → P . Using these inclusions, we define a functor
F : Φ → Pers(C), sending each p to the restriction of D to Pp, i.e. Fp := (ip)

∗D. We
denote by (Pp,≤p) the domain of Fp. When p ≤Φ p′, we obtain a morphism (F 1

p,p′ , F
2
p,p′)

of Pers(C). Note that F is a functor F : Φ→ IsoPers(C), since Fp′ is the restriction of
D to Pp′ , hence agree with Fp, which is the restriction of D to Pp ⊆ Pp′ .

13.3.5. Proposition. Let P , G, D and F be as defined in the above paragraph. If C is
poset co-complete, we have

colim
Pers(C)

F = D.

Proof. The functor F determines a functor GF from Φ to Pos:

GF : Φ −→ Pos

p � //

≤Φ
��

Pp

F 1
p,p′
��

p′ � // Pp′

By hypothesis, we have GF = G, so the colimit of GF is equal to P . In this optic,
elements of P are equivalence classes [x] of elements xp ∈ Pp under the equivalence
relation generated by xp ∼ xp′ if, and only if, p ≤Φ p′ and F 1

p,p′(xp) = xp′ . Notice
that if [xp] = [xp′ ], there exists a zig-zag of F 1

q,q′ ’s between them. Therefore, since the
components F 2

q,q′ ’s are all natural isomorphisms, we have Fp(xp) ' Fp′(xp′), hence

[xp] = [xp′ ]⇒ Fp(xp) ' Fp′(xp′) (13.3.1)

Furthermore, we know that [x] ≤P [y] if, and only if, there exists a finite sequence
p = p0, . . . , pn = p′ and elements vi, wi of Ppi such that

xp = vp0 ≤p0 wp0 ' vp1 ≤p1 wp1 ' · · · ' vpn−1 ≤pn−1 wpn−1 ' vpn ≤pn wpn = yp′ ,
(13.3.2)

and [xp] = [x], [yp′ ] = [y].

We also point out that each equivalence class [x] of P is endowed with an order which
is inherited from Φ: xp ≤[x] xp′ if, and only if, p ≤Φ p′. For each of these equivalence
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classes, we consider a functor

F[x] : [x] −→ C

xp
� //

≤[x]

��

Fp(xp)

F 2
p,p′(xp)
��

xp′
� // Fp′(xp′)

By hypothesis, C is co-complete, so we obtain the colimit c[x] in C of the diagram given
by F[x]. For every xp, xp′ , Fp(xp) ∼= Fp′(xp′) since the natural transformations induced
by F are isomorphisms. Thus

Fp(xp) ∼= c[x] for any xp ∈ [x] (13.3.3)

Now suppose that [x] ≤ [y]. We want to prove that c[y] is a co-cone for F[x]. We reason
by induction on the length n of the sequence given in Equation (13.3.2). If n = 0,
Equation (13.3.2) amounts to the existence of p0 ∈ Φ and representatives vp0 , wp0 ∈ Pp0
with vp0 ≤p0 wp0 , p = p0 = p′, xp = vp0 , wpn = yp′ and [xp] = [x], [yp′ ] = [y]. We must
show that for all xp ≤[x] xp′ , we have a commutative diagram of the following shape:

Fp(xp)
F 2
p,p′(xp)

//

##

Fp′(xp′)

{{

c[y]

(13.3.4)

Since vp0 ≤p0 wp0 , functoriality of Fp0 gives an arrow

Fp0(vp0 ≤p0 wp0) : Fp0(vp0)→ Fp0(wp0).

This means that we have the following diagram, where all of the morphisms in the
top triangle are isomorphisms induced by the natural transformations F 2 (by Equation
(13.3.1) in particular):

Fp(xp)

'

**'
Fp0(vp0)

��

Fp′(xp′)
'

Fp0(wp0)

��

c[y]

Therefore c[y] is a co-cone for F[x] and we obtain a unique arrow Γ[x],[y] : c[x] → c[y] in C.
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Suppose now that we have the property that c[y] is a co-cone for F[x] when the length of
the sequence in Equation (13.3.2) is strictly below n. We want to prove the property
still holds when the sequence has length n. In the latter case, we have a finite sequence
p = p0, . . . , pn = p′ and elements vi, wi of Ppi such that

xp = vp0 ≤p0 wp0 ' vp1 ≤p1 wp1 ' · · · ' vpn−1 ≤pn−1 wpn−1 ' vpn ≤pn wpn = yp′ ,

and [xp] = [x], [yp′ ] = [y], and we suppose that c[wpn−1 ] is a co-cone for F[x].

By Equation (13.3.3), we have c[wpn−1 ]
∼= Fpn−1(wpn−1), and since wpn−1 ' vpn , we also

have Fpn−1(wpn−1) ∼= Fpn(vpn) by Equation (13.3.1). Finally, since vpn ≤pn wpn = yp′ ,
we have a morphism Fpn(vpn)→ Fp′(yp′) in C induced by Fp′ . So we have the following:

Fp(xp)

'

**'
Fp0(xp0)

��

Fp′(xp′)
'

Fpn(vpn)

��

Fp′(yp′)

��

c[y]

Therefore c[y] is again a co-cone for F[x], giving the unique arrow Γ[x],[y] : c[x] → c[y] in C.

We define a functor Γ : P → C which sends [x] to c[x] and [x] ≤ [y] to the arrow Γ[x],[y]

given by the argument above. It is clear that Γ = D; it remains to show that Γ is indeed
the colimit of F .

Let D′ : p′ → C another co-cone for F . For every p ∈ Φ, we have morphisms (j1
p , j

2
p) such

that the following diagram commutes in Pers(C) for all p ≤ p′:

Fp
(F 1

p,p′ , F
2
p,p′)

//

(j1
p , j

2
p)   

Fp′

(j1
p′ , j

2
p′)~~

D

In particular, this means we have the following commutative diagram in Pos:

Pp
F 1
p,p′

//

j1
p   

Pp′

j1
p′

~~

P ′
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This in turn means that P ′ is a co-cone over G, so we obtain a unique morphism
φ : P → P ′. Furthermore, D′ being a co-cone over F implies that for all xp, xp′ ∈ [x], we
have the following commutative diagram in C:

Fp(xp)
F 2
p,p′(xp)

//

j2
p(xp)

''

Fp′(xp′)

j2
p′(xp′)

ww

D′(j1
p(xp)) = D′(j1

p′ ◦ F 1
(p,p′)(xp))

Since c[x] is the colimit of F[x], we therefore obtain a unique arrow σ[x] : c[x] → D′(j1
p(xp))

for any representative xp ∈ [x]. Denoting by ip : Pp → P the morphisms in Pos induced
by the colimit of G, we have that φ([x]) = φ(ip(xp)) = j1

p(xp) for any p ∈ Φ such that
Pp contains a representative of [x]. With some diagram chasing, we find that (φ, σ) is a
morphism of Pers(C) from Γ to D′, and by construction is the unique map making the
colimit triangles commute. Thus D is the colimit of F in Pers(C).

13.3.6. Natural homology as a colimit. Using the above proposition, we obtain
the following theorems:

13.3.7. Theorem. Let X = (X, dX) be a pospace and α a point in X.

i) The natural homology of X is the colimit in Pers(VectK) of the persistent homology
along each of its traces.

ii) The natural homology of X is the colimit in Pers(VectK) of the persistent homology
its of its maximal traces, seen as chains in P(X ), completed with pullbacks (resp.
quasi-pullbacks).

iii) The natural homology of the up-set of α, seen as a constant trace, in P(X ) is the
colimit in Pers(VectK) of the persistent homologies of the traces passing through
α or of the maximal chains passing through α completed with pullbacks or quasi-
pulbacks.

Proof. These are direct consequences of Propositions 13.3.5 and 13.3.2.

This method is applicable to any colimit diagram in Pos given by inclusions into the
maximal chains. Indeed, we have the persistent homology of the maximal chains and
we can induce maps on any subposets thereof by restriction, thereby inducing maps in
Pers(VectK) constituting the corresponding cone in the functor category.
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Chapter 14.
Conclusion and perspectives

Here we summarise the work and presenting perspectives on future work. Shortly put,
the main contributions of this thesis project are the following:

i) The introduction of an algebraic setting for coherence proofs by rewriting, which
lends itself towards formalisation [17].

ii) The provision of an algebraic coherence theorem for abstract rewriting systems [16],
which inspired a coherence theorem for abstract rewriting systems in any dimensions.

iii) A contribution to a project of formalisation of generalised higher categories and
their power-set liftings [14, 18].

iv) A refinement of directed algebraico-topological invariants, notably in terms of
time-reversal and relative homotopy theory [15].

v) The establishment of a concrete link between natural homology and persistence
theory.

In Part I, first steps towards a formalisation of higher coherence theorems were made.
First, coherence in abstract rewriting, even in higher dimensions, was shown to be essen-
tially two-dimensional via the notion of underlying rewriting polygraph. By extending
Kleene algebra to higher structures encoding the paving mechanisms offered by higher
dimensional rewriting theory, we provide an algebraic setting for coherence proofs. We
formulate and prove a coherence theorem for (higher) abstract rewriting systems, in
which diagrammatic reasoning is replaced by a series of deductions in a simple algebraic
signature, and check this formalisation using power-set models of free higher categories.
Finally, we push this correspondence to its limits, showing a Jónsson-Tarski style duality
for generalised categories, i.e. catoids, and higher Kleene algebras with extra structure,
i.e. higher quantales.

The first results presented in Part II concern the problem of time-symmetry for natural
homology and homotopy on the one hand, and the theory of relative natural homotopy
on the other. The first point was accomplished by equipping these directed invariants
with a natural notion of composition, which in turn allows their interpretation as certain
categories. Opposition in these categories is then shown to be the invariant associated
to the time-reversal of the considered space. For the second point, we use notions of

231
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exactness in non-homological categories to show that the long exact sequence given by
classical relative homotopy extends to natural homotopy in a way which interacts well
with the notion of fibration. This refinement of natural homotopy and homology allow a
finer analysis of directed spaces.

Finally, Part II presents results linking natural homology to the domain of persistence.
This provides a first step towards tractable algebraic invariants for directed spaces. The
notion of evolution of (classical) homological type, present in persistence by design and in
directed topology by structure, provided a first foothold in comparing these approaches.
This was strengthened by the observation that the domain of the natural homotopy
functor is in fact a poset when considering partially ordered spaces. Furthermore, the
main structural component of directed spaces, directed paths, were shown to generate
uni-dimensional persistence modules, which may then be amalgamated to recover natural
homology. This not only provides a method for calculating (subdiagrams of) natural
homology, but also provides insight into its structure.

Perspectives and future work

Just as in the case of the results obtained over the course of this thesis project, the avenues
of future work focus on algebraico-topological aspects of higher directed structures and
the formalisation thereof. These are described in more detail below, but are summed up
as follows:

i) A continuation of the formalisation of higher rewriting systems in the proof assistant
Isabelle.

ii) Extending the algebraic formulation of coherence to capture polygraphic resolution,
leading to a formal approach to the calculation of cofibrant replacements by
rewriting.

iii) Describing string rewriting and other paradigms of algebraic rewriting via Kleene
algebraic or quantalic structures.

iv) Defining a higher homotopical invariant for directed spaces.

v) Introducing a notion of ω-directed space.

vi) Exploring the consequences the strong connection between persistence theory and
directed homology.

Formalisation of coherence. As higher categorical structures become more complex,
and in particular dependant on complex coherence conditions, the development of
formal tools for checking these conditions becomes primordial not only in exploring
the mathematical properties of such structures, but also in their practical use. The
combinatorics involved in such higher settings become unwieldy in human hands due
to the complexity of weak higher structures - a look at the coherence conditions for
bi-categories, for example, demonstrates this readily. The use of interactive theorem
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provers translates such routine, but humanly untractable, (diagrammatic) verifications
into first order logic, thereby allowing machines to generate counter-examples or verify
certain properties. The introduction of higher algebraic structures such as higher Kleene
algebras and higher quantales provides an algebraic setting which lends itself to this
type of formalisation. Furthermore, the introduction of algebraic structures with total
multi-operations generalising higher categories not only facilitates their formalisation, but
has also offered insight into their structure, for example in the weakness of homomorphism
laws.

In short, this algebraic treatment of higher directed structures provides a first step toward
the development of formal tools, while encoding them in theorem provers like Isabelle has
pushed us to precisely formulate their structure and eliminate axiomatic redundancies.
Continuing this line of research, next natural steps include the following:

Isabelle theories. Firstly, the Isabelle repository, to which the author has contributed,
will be completed to include results related to coherence found in this thesis. While the
Isabelle theories for higher Kleene algebras, higher quantales and higher catoids have been
established, the coherence theorems will be encoded therein, including the consistency
check via the Jónsson-Tarski correspondence theorem. In short, Theorems 9.3.2, 9.2.9,
and 9.4.3, as well as necessary structural lemmas, will be formalised.
Resolutions and cofibrance. The natural next step is to capture the iterated coherence
procedure described in Section 3.2.3. Indeed, while the first step of this procedure is
assured by Theorem 8.5.2, but we have yet to obtain the necessary result for propagation
to higher dimensions. In more detail, consider a higher Kleene algebra K and a local
confluence filler A for an element φ. Given a normalisation strategy σ associated to φ,
it must be shown that the element σσ is a section of normal forms associated to the
completion of A, seen as a (higher) convergent rewriting system.
Such a result would provide a means of describing the notion of polygraphic resolution,
as described in [91], and the construction of such a resolution by convergent rewriting
techniques, see [64]. This can in turn be used to construct cofibrant replacements of
(higher) algebraic structures.
Formalisation of algebraic rewriting. In this work, we have algebraically captured
coherence mechanisms for abstract rewriting systems, but have yet to push this analysis
to the domain of string rewriting systems. As described in Section 5.3, these are (two-
dimensional) rewriting systems which take the algebraic operations of the presented
structure into account.
Even consistency results for SRS have not been captured in any other setting than
that of polygraphic rewriting, see [68]. This is essentially due to the notion of contexts,
of which whiskers (see Section 5.3.7) are a special case, which allow the definition of
critical branchings. One reason we began considering quantalic structures such as those
presented in Chapter 10 was in order to use the continuity of multiplication to obtain
a residuation operation, described in the case of relation algebras in [30], allowing the
“cutting away” of contexts. Describing critical branchings in higher quantales would lead
to an algebraic formulation of the critical branching lemma [68], see Theorem 5.3.16, and
such a formulation of critical coherence, see Theorem 7.2.1. This reduces the consistency
or coherence checks drastically.

https://github.com/gstruth/catoids
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Directed algebraic topology. Algebraic topology, having originated in the undi-
rected paradigm of classical topology, has birthed category theory, which is naturally
equipped with (higher) directed cells. Open problems in higher category theory, for
example the Simpson conjecture, seem to be strongly related to the homotopy theory
of directed spaces in the form of, for example, the directed homotopy hypothesis. Such
considerations equally apply to (directed) homotopy type theory. Without a topological
notion of higher direction, developing a sound homotopy theory for (higher) directed
structures remains nebulous1. Indeed, the homotopical invariant studied in this thesis,
natural homotopy, is in some sense a topological approach to studying the homotopy
of (weak) (∞, 1)-categories. This is due to the fact that directed spaces are in essence
encoded by the one-dimensional information given by paths. Without a higher notion of
directed space, there is no topological guide to understand what appropriate directed
homotopical invariants should be.

To summarise, it is my belief that a fundamental problem in modern mathematics stems
from directed structures having their basis in an undirected notion, namely homotopy
for classical spaces. Constructing higher categorical structures encoding the homotopy of
directed spaces and developing a notion of higher directed space present future avenues of
work which on the one hand extend this thesis and on the other hand confront the clash
between directedness and classical topology. We sum this up in the points below:

Higher homotopical invariants. In Section 12.1.2 of this document, it was shown
that natural homotopy and homology functors are equipped with composition pairings,
resulting in Theorem 12.1.5, which states that there is a functorial assignment of a
1-category CnX to the nth natural homotopy functor

−→
Pn(X ). Using a similar construction,

we hope to build a (weak) (∞, 1)-category capturing all of this information. Indeed,
since each of the categories CnX is above

−→
P(X ), the trace category, and since the 0-cells,

i.e. points of X, are conserved, the globularity of higher categories should provide a
method by which to “stack up” the information in each natural homotopy category CnX
into a single higher structure. Indeed, by construction, the considered homotopies are
equally globular.
A notion of higher directed space. The above, however, does not address the notion
of higher directed space. In recent conversations between F. Paugam and the author, a
notion of higher directed space has been discussed, based on complicial sets. These were
first introduced by Roberts [100], made more precise via the Street nerve [107], and finally
developed by Verity, see for example [115]. These are more general versions of weak Kan
complexes, combinatorial models of weak (∞, 1)-categories. Roughly speaking, complicial
sets consist of a simplicial set along with a subcomplex of “marked” simplices. These
marked simplices differentiate higher cells which encode structure on lower dimensions
from directed higher cells.
Given a directed space X = (X, dX), we can construct the singular simplicial complex
Π∞(X) associated to its underlying space. The idea is to recover the directed space
by restricting Π1(X) to the paths found in dX, marking some of them as equivalences,
and then mark all higher cells, thereby obtaining a complicial complex associated to

1see John Baez’s tweet on the subject.

https://twitter.com/johncarlosbaez/status/1429093498859384838
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X . Pushing this further, a notion of ω-directed space on a topological space X could
be obtained by considering a complicial complex which is a subcomplex of Π∞(X). In
other words, we would obtain a directed space in which homotopies are themselves also
directed. This would provide a higher directed topological setting and provide insight
into what homotopical invariants should be for such structures.
Homology theories. In this thesis, we focussed on the computation of natural homology
via tractable methods offered by persistence theory. While this algorithmic computational
aspect will continue to develop, the link that was established between these two theories
leads to several natural questions. Firstly, using the tractable algorithmic approach offered
by uni-dimensional persistence could lead to tractable invariants for directed spaces.
Secondly, understanding how to interpret barcodes in the case of natural homology could
be approached via the colimit construction on chains; this is linked to open questions
in multi-dimensional persistence theory. Next, the link between interleaving distance,
a notion from persistence theory, and bisimulation of natural systems will be explored.
Finally, I believe that the notion of composition pairing, or some such operation, could be
interpreted in persistence theory and have links to hybrid and dynamical systems.
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